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Congratulations to Pierre 
on a long illustrious impactful career!
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Plan
1. Re-assessment of the strong CP problem (still there!)
2. QCD axion vs discrete symmetry as solution to strong CP: 

some comments. 
3. EDM observables induced by theta term:
§ New result for electron EDM observables induced by theta 

term. 
§ Explanation why lattice QCD has difficulty in predicting dn(q ).
§ ”Correct” choices of current for the lattice or QCD sum rule 

calculation of dn(q ).
§ Revisiting QCD sum rule calculations: generalizing earlier 

calculations to Ioffe current, b = -1. Consistent results. 
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Strong CP problem

Energy of QCD vacuum depends on θ-angle:

E(θ̄) = −1

2
θ̄2m∗〈qq〉 + O(θ̄4,m2

∗)

where 〈qq〉 is the quark vacuum condensate and m∗ is the re-
duced quark mass, m∗ = mumd

mu+md
. In CP-odd channel,

dn ∼ e
θ̄m∗
Λ2

had
∼ θ̄ · (6× 10−17) e cm

Strong CP problem = naturalness problem = Why |θ̄| < 10−9

when it could have been θ̄ ∼ O(1)? θ̄ can keep ”memory” of
CP violation at Planck scale and beyond. Suggested solutions

• Minimal solution mu = 0 ← apparently can be ruled out
by the chiral theory analysis of other hadronic (CP-even)
observables.

• θ̄ = 0 by construction, requiring either exact P or CP at high
energies + their spontaneous breaking. Tightly constrained
scenario.

• Axion, θ̄ ≡ a(x)/fa, relaxes to E = 0, eliminating theta
term. a(x) is a very light field. Not found so far.

Maxim Pospelov, SUSY 2006



BSM physics and EDMs
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• Extremely high scales [10-100 TeV] can be probed if new 
physics generating EDMs violates CP maximally. 

Effective CP-odd Lagrangian at 1 GeV

in the spirit of Wolfenstein’s superweak interaction,
Khriplovich et al., Weinberg,... Appying EFT, one can classify
all CP-odd operators of dimension 4,5,6,... at µ = 1 GeV.

L1GeV
eff =

g2
s

32π2
θQCDGa

µν
˜Gµν,a

− i

2
∑

i=e,u,d,s
di ψi(Fσ)γ5ψi −

i

2
∑

i=u,d,s

˜di ψigs(Gσ)γ5ψi

+
1

3
w fabcGa

µν
˜Gνβ,bG µ,c

β +
∑

i,j=e,d,s,b
Cij (ψ̄iψi)(ψ̄jiγ5ψj) + · · ·

If the model of new physics is specified, for example, a specific
parameter space point in the SUSY model, Wilson coefficients
di, d̃i, etc. can be calculated.

To get beyond simple estimates, one needs dn, atom as functions
of θ, di, d̃i, w, Cij, which requires non-perturbative calculations.
which I review in the next few transparencies.

Maxim Pospelov, GGI workshop, Florence 03/23/2010

From SUSY to an atomic/nuclear EDM

Energy

TeV

atomic

nuclear

QCD

neutron EDM

paramagnetic
    EDMs of
   atoms (Tl)

   EDMs of
diamagnetic
 atoms (Hg)

fundamental CPïodd phases
              (MSSM)

d e e ,d  , d  , wq q
C   ,C qe qq

NN/g 

`tan        1

Hadronic scale, 1 GeV, is the normalization point where pertur-
bative calculations stop.

Maxim Pospelov, GGI workshop, Florence 03/23/2010

• One needs hadronic, 
nuclear, atomic matrix 
elements to connect 
Wilson coefficients to 
observables

ThO, HfF+



Axion mechanism in the presence of extra CP 
violation – proper UV decoupling
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Imagine that at some scale LCP there is some new CP-violating physics with phases 
dCP. Integrating it out, we end up with a series of effective CP-odd operators of 
various dimensions, OCP. 

Dq is an additive renormalization of theta-term and is unobservable in the axion 
model. 

Higher dimensional operators induce axion tadpoles, leading to the minimum of the 
potential away from q = 0.

g2aNN

~q2 +m2
a

(62)

aNN (63)

⇤aNN (64)

gaNN (65)

⇤QCD/⇤CP ! 0 (66)

mN(✓) = m(0)

N + ✓m(1)

N + ... = m(0)

N +
a

fa
m(1)

N (67)

Evac = const+ ✓2m⇤|h0|qq|0i| (68)

h✓1|any gauge inv. operator|✓2i = 0, if ✓1 6= ✓2 (69)

⌘ ! ⇡+⇡�

dn(✓) '
✓m⇤

4⇡2F 2
⇡

log
4⇡F⇡

m⇡
+ ...

m⇤ =
mumdms

mumd +mdms +msmu
' mumd

mu +md

✓g2s
32⇡2

Ga
µ⌫G̃

a
µ⌫

|✓|  few 10�10

✓ ! ✓ +
a

fa

t ! 1

h✓ + a

fa
i = 0

Leff =
�✓(�CP )g2s

32⇡2
Ga

µ⌫G̃
a
µ⌫ +

X

q

d̃q(�i/2)q(G�)�5q + cW (GGG̃) + ...

6

Leff =
�✓(�CP )g2s

32⇡2
Ga

µ⌫G̃
a
µ⌫ +

X

q

d̃q(�i/2)q(G�)�5q + cW (GGG̃) + ...

✓ind

7

Leff =
�✓(�CP )g2s

32⇡2
Ga

µ⌫G̃
a
µ⌫ +

X

q

d̃q(�i/2)q(G�)�5q + cW (GGG̃) + ...

✓ind

O5

O6

7

Leff =
�✓(�CP )g2s

32⇡2
Ga

µ⌫G̃
a
µ⌫ +

X

q

d̃q(�i/2)q(G�)�5q + cW (GGG̃) + ...

✓ind

O5

O6

7

Leff =
�✓(�CP )g2s

32⇡2
Ga

µ⌫G̃
a
µ⌫ +

X

q

d̃q(�i/2)q(G�)�5q + cW (GGG̃) + ...

✓ind

O5

O6

✓ind /
R
d4xT h0|GG̃(0), O5(x)|0iR
d4xT h0|GG̃(0), GG̃(x)|0i

7

Leff =
�✓(�CP )g2s

32⇡2
Ga

µ⌫G̃
a
µ⌫ +

X

q

d̃q(�i/2)q(G�)�5q + cW (GGG̃) + ...

✓ind

O5

O6

✓ind /
R
d4xT h0|GG̃(0), O5(x)|0iR
d4xT h0|GG̃(0), GG̃(x)|0i

7

will have the decoupling properties, i.e. 
qind à0 as LUV à infinity. 
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Models based on quasi-exact discrete 
symmetries have to be “engineered”

§ Models where q is close to zero “by construction” (Parity, CP, mirror 
symmetry) have to be constructed rather carefully not to be in conflict 
with the neutron EDM bounds. 

§ Same refers to models with the so-called “heavy axions” where some 
BSM physics in the UV enhances topological susceptibility, 

If there is some scale of e.g.  “small instantons”, LSI, that enhances c, 
and there is extra amount of CP-violation, e.g. LW

-2GGGdual, the 
induced theta term scales as 
qind ~ (LSI / LW )2, which is extremely UV sensitive. (Bedi, MP, 
Gherghetta, 2022). No decoupling makes these models less appealing

2 Instanton Correlation Functions

We begin with briefly reviewing QCD dynamics and the instanton solution that will be used
to compute various instanton correlation functions. The pure Yang-Mills part of the QCD
Lagrangian is given by

LQCD = � 1

4g2
Ga

µ⌫G
aµ⌫ +

✓

32⇡2
Ga

µ⌫
eGaµ⌫ , (4)

where g is the QCD gauge coupling, ✓ is the QCD vacuum angle and a = 1, . . . , 8 labels the
gauge adjoint representation. The BPST instanton solution [44] is given by

Aa

µ(x) =
2⌘aµ⌫(x� x0)⌫
(x� x0)2 + ⇢2

, (5)

where the instanton is located at x0 and has a size ⇢. The ⌘aµ⌫ denote the group-theoretic ’t
Hooft ⌘ symbols [45]. The topological charge is defined to be

Q =
1

32⇡2

Z
d4xGa

µ⌫
eGaµ⌫ , (6)

where Q = 1 for the one instanton solution (5). We will next compute correlation functions in
the instanton (or anti-instanton) background (5) that will be useful in obtaining contributions
to EDM observables such as the neutron EDM.

2.1 Topological susceptibility

The vacuum-to-vacuum amplitude in QCD can be written as

h0|0i =
X

Q

Z
DA(Q)

µ e�SE , (7)

where the Euclidean action for (4) in an instanton background of charge Q [46] is given by

SE =
8⇡2

g2
|Q|+ iQ✓ . (8)

The topological susceptibility is then introduced as [8, 11, 47]

�(0) = �i lim
k!0

Z
d4x eikx

⌧
0

����T
⇢

1

32⇡2
G eG(x),

1

32⇡2
G eG(0)

����� 0
�

, (9)

where G eG is shorthand notation for Ga
µ⌫

eGaµ⌫ .
Since the amplitude in the |Q| > 1 instanton background becomes more exponentially sup-

pressed, only the Q = ±1 configurations dominate the path integral. Henceforth, we refer to SE

in (8) only for |Q| = 1. In the instanton background (5) we then obtain the two-point correlator
D
0
���T

n
G eG(x), G eG(0)

o��� 0
E

Q=+1

=

Z
DAµ G eG(x)G eG(0) e

� 8⇡2

g
2
0 , (10)

=

Z
d4x0

d⇢

⇢5
C[N ]

✓
8⇡2

g2(1/⇢)

◆2N

e
� 8⇡2

g2(1/⇢)
192⇢4

((x� x0)2 + ⇢2)4
192⇢4

(x20 + ⇢2)4
, (11)

4
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Is strong CP problem on solid foundation? 
§ Confinement? After all, all pheno consequences are for hadrons, but 

the original formulation in terms of [nonperturbative] gluons. 
 Addressed by the famous Shifman-Vainshtein-Zakharov paper – 

at a level of a theorem. 

§ Recent papers doubting the existence of strong CP problem. In the last 
few years, there were multiple claims that strong CP might be not a 
real problem: Ai, Garbrecht, Tamarit, 2020; G. Schierholz, 2023,2024; 
N. Yamanaka, 2022 etc. Contradiction with the SVZ paper is not given 
a satisfactory explanation. 

§ Lattice QCD having hard time deriving dn(q ). Starting from Aoki et 
al. (1990) – onward, Lattice QCD has a difficulty of handling dn(q ) 
calculation 
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Axion mass and connection to U(1)A

§ There are multiple derivations of the the axion mass (aka topological 
susceptibility) result. The simplest one is using chiral transformation 
to “move” theta term in front of the quark mass. 

m* is the reduced quark mass, mumd(mu+md). The expectation value of 
the second term over the vacuum here is the vacuum energy dependence 
on the theta angle (and upon the rescaling the axion mass squared.) 

We assume that U(1) problem is solved somehow, and the mass of the 
singlet is lifted. Otherwise, pole diagram with the singlet will cancel 
theta dependence. 

Investigation of nucleon current correlator

Maxim Pospelov

Abstract
We are interested in the following question: are all nucleon currents equally

suitable for the investigation of chirality-sensitive matrix elements? We show

that only � = ±1 lead to the physical answers for the correlator of nucleon

currents. At � = 0, for example, the observables depend on theta-angle even

if one takes a chiral limit, and that is not physical.

1. Which observables?

Let us recall that if we take a QCD Lagrangian with real masses and a theta

term, all theta dependent observables cancel in the chiral limit. Lagrangian

LQCD = �1

4
(G

a
µ⌫)

2
+

X

u,d,

q̄(iDµ�µ �mq)q +
✓g

2
s

32⇡2
G

a
µ⌫G̃

a
µ⌫ (1)

can be transformed into a complex singlet mass term that has real and imag-

inary parts, .

! m⇤(ūi�5u+ d̄i�5d)✓ +m⇤(ūu+ d̄d)✓
2
/2 + ... (2)

Any physical observable dependent on ✓ vanishes in mq ! 0 limit.

In particular, the vacuum expectation value of the second term here cor-

responds to axion mass (aka topological susceptibility),

d
2
(Evac)/d✓

2
= m

2
af

2
a = �m⇤h0|ūu+ d̄d|0i (3)

If instead of the vacuum, we substitute a nucleon, we get the nucleon

mass dependence on theta,

d
2
(mN)/d✓

2
= �m⇤hN |ūu+ d̄d|Ni. (4)

Likewise all observable that are linear in ✓ will be 0 in m⇤ ! 0 limit: CP -odd

⇡ �NN coupling, neutron EDM etc.

1
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1. Which observables?

Let us recall that if we take a QCD Lagrangian with real masses and a theta

term, all theta dependent observables cancel in the chiral limit. Lagrangian

LQCD = �1

4
(G

a
µ⌫)

2
+

X

u,d,

q̄(iDµ�µ �mq)q +
✓g

2
s

32⇡2
G

a
µ⌫G̃

a
µ⌫ (1)

can be transformed into a complex singlet mass term that has real and imag-

inary parts, .

! m⇤(ūi�5u+ d̄i�5d)✓ +m⇤(ūu+ d̄d)✓
2
/2 + ... (2)

Any physical observable dependent on ✓ vanishes in mq ! 0 limit.

In particular, the vacuum expectation value of the second term here cor-

responds to axion mass (aka topological susceptibility),

d
2
(Evac)/d✓

2
= m

2
af

2
a = �m⇤h0|ūu+ d̄d|0i (3)

If instead of the vacuum, we substitute a nucleon, we get the nucleon

mass dependence on theta,

d
2
(mN)/d✓

2
= �m⇤hN |ūu+ d̄d|Ni. (4)

Likewise all observable that are linear in ✓ will be 0 in m⇤ ! 0 limit: CP -odd

⇡ �NN coupling, neutron EDM etc.

1

qmq(qq)     h’     qmq(qq)



Linear in GG matrix elements

10

• Consider a matrix element of <H1 p | GGdual |H2> operator, for the 
states of a soft pion, where H are arbitrary in- and out- states. 

• Chiral PT / current algebra / soft pion theorem allow to “reduce” the 
pion so that 

< H1 p | GGdual | H2 > à i (Fp)-1 < H1  | mq(uu-dd) | H2 > . If H1, H2 are 
nucleons, we get a scalar-isovector matrix element, part of the n-p mass 
splitting.

• In our world with light quarks mp
2 = B mq while mh’ 

2 = B mq + m0
2, 

and heavy mass of h’ requires m0
2 to be large and mq independent in 

the limit of large mq. In an imaginary world, where eta-prime is light 
and m0

2 =0, there is a second diagram that cancel the first one (SVZ 
1980, MP, Ritz 1999)

qmq(uu-dd)

qmq(qq)

mq(uu-dd)

h’

~
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EDMs induced by qQCD

§ Neutron EDM.  

Crewther et al showed logarithmic sensitivity to mp, and numerically this 
is ~ few 10-16 e cm. Q < 10-10. 

§ 199Hg EDM. This is the tightest constraint on atomic EDM, the 
sensitivity to theta is reduced because one has to use Schiff moment of 
the nucleus. Similar sensitivity to q, with different systematics. 

§ Paramagnetic EDMs (aka electron EDM) – coupling of electric field to 
an unpaired electron spin. What is the sensitivity to theta? 

of theta)

dn ' e⇥ gA ⇥ (15⇥ 10�3
✓)
log(m2

N/m
2
⇡)

8⇡2F⇡
, (24)

and the sign of it is +, as e, gA > 0 in these notations.

Now we would like to write down all quark propagators using the following
notations, S(n,k)

q , where n, k are order of expansion in mq and eq. (In other

words, S(0,0)
q is the usual quark propagator

S
(0,0)
q =

i

2⇡2
⇥ x/

x4
. (25)

Now, 0th order in EM field and first order in quark mass propagator is

S
(1,0)
q = � 1

4⇡2
⇥ mq � i✓m⇤�5

x2
. (26)

Notice that the relative sign of mq and m⇤ flipped compared to what it was
in Lm.

We now consider a (0, 1) term in the EM field. For that, we take into
account that the covariant momentum should be written as

pµ ! pµ � eQqAµ, (27)

where e is positive and Qu = +2/3, Qe = �1 etc. With these notations, we
get the following contribution to the propagator,

S
(0,1)
q = � ieQq

8⇡2x2
F̃µ⌫xµ�⌫�5 (28)

Let us sketch the derivation quickly. In momentum representation, the in-
coming (i.e. absorbed) photon attached to the fermion line gives the following
correction to the propagator,

S
(0,1)
q = �ieQq

1

p/
k/
1

p/
A/

1

p/
! eQq

1

2
Fµ⌫

1

p/
�µ

1

p/
�⌫

1

p/
=

ieQq

p4
F̃µ⌫�µ�5p⌫ (29)

We have used that the incoming photon wave function is proportional to
exp(�i(kx)), and therefore Fµ⌫ = �ikµA⌫ + ik⌫Aµ. Fourier transforming
this back to the x-representation gives (28).

7



Progress in paramagentic EDMs
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• In the last ~ 10 years, improved by a factor of ~ 400. 

• Sensitivity is usually quoted as de. Relativistically enhanced as 
dAtom ~ Z3a2de. In reality, dAtom is a linear combination of de and a 
semileptonic operator. Using most sensitive results from ThO 
and HfF+ molecules, one can limit both sources. Diatomic 
molecules have strong internal field and can effectively 
“enhance” modest external E field. 

• More progress is real (e.g. ACME III). Most daring proposals 
want to go down to de ~ 10-34 e cm. 

• Theoretically is the cleanest. Atomic theory is under control at ~ 
10% accuracy. In many models - minimum of QCD/nuclear 
input. SM contributions (qQCD and dCKM) were calculated in the 
last three years. Benchmark CKM value de

eq = 1.0 * 10-35 e cm.

|de| < 1.6 × 10-27e cm  à |de| < 4.1 × 10-30 e cm (HfF+), 1.1 × 10-29(ThO) 
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“Paramagnetic” EDMs:
§ Paramagnetic EDM (EDM carried by electron spin) can be 

induced not only by a purely leptonic operator 

but by semileptonic operators as well: 

§ Only a linear combination is limited in any single experiment. 
ThO 2018 ACME result is:

 |de | < 1.1×10-29 e cm       at  CS = 0 
 |CS

singlet| < 7.3×10-10    at   de = 0 
     ß   Specific for ThO

de
equiv = de + CS*0.9*10-20 e cm ß Specific for Hf F+

�� =
2GFp

2
⇥ nn ⇥�L⇥ n (47)

L = |Dµ�|2 �m2

�|�|2 �
1

4
V 2

µ⌫ +
1

2
m2

V V
2

µ � ✏

2
Vµ⌫Fµ⌫ (48)

L = �(i@µ�µ �m�)�+ ���S +
1

2
(@µS)

2 � 1

2
m2

SS
2 � AS(H†H) (49)

��⇤ ! o↵ shell dark photon ! e+e� (50)

�� ! S + S ! ... ! (e+e�) + (e+e�) (51)

! ....
1

2
(@µS)

2 � 1

2
m2

SS
2 + S✓(yfff + ...) (52)

mttt !
✓
1 +

h

S

◆
mttt ! H.peng. ⇠ (� · p) @

@v
SelfEnergy(mt/mW ) (53)

@

@v
SelfEnergy(mt/mW ) =

@

@v
SelfEnergy(yt/gW ) = 0? (54)

gaxial
10�6

⇥
✓
17 MeV

mX

◆
< 0.1� 1 (55)

de ⇥
�i

2
 �µ⌫�5Fµ⌫ (56)

CS ⇥ GFp
2
NN  i�5 (57)
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�� =
2GFp

2
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1

2
m2

V V
2

µ � ✏

2
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L = �(i@µ�µ �m�)�+ ���S +
1

2
(@µS)

2 � 1

2
m2
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1

2
(@µS)

2 � 1

2
m2
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✓
1 +

h

S

◆
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⇥
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Standard Model CP violation associated with the phase of the Cabibbo-Kobayashi-Maskawa
quark mixing matrix is known to give small answers for the EDM observables. Moreover, predictions
for the EDMs of neutrons and diamagnetic atoms su↵er from considerable uncertainties. We point
out that the CP -violating observables associated with the electron spin (paramagnetic EDMs) are
dominated by the combination of the electroweak penguin diagrams and �I = 1/2 weak transitions
in the baryon sector, and are calculable within chiral perturbation theory. The predicted size
of the semileptonic operator CS is 7 ⇥ 10�16 which corresponds to the equivalent electron EDM
deqe = 1.0 ⇥ 10�35e cm. While still far from the current observational limits, this result is three
orders of magnitude larger than previously believed.

Introduction— The searches for EDMs of elemen-

tary particles [1–4] represent an important way of prob-

ing the TeV scale new physics [5–7]. Recent break-

through sensitivity to CP violation connected to electron

spin (that we will refer to as “paramagnetic EDMs”) [3]

established a new limit on the linear combination of

the electron EDM de and semileptonic nucleon-electron

N̄Nēi�5e operators, commonly parametrized by a CS co-

e�cient. Given rapid progress of the last decade, as well

as some additional hopes for increased accuracy (see e.g.
[8–10]) makes one to revisit the Standard Model (SM)

sources of CP violation, and the expected size of the

paramagnetic EDMs in the SM.

SM has two sources of CP -violation. First source, un-

detected thus far, corresponds to the non-perturbative

e↵ects parametrized by the QCD vacuum angle ✓. Re-

cently it has been shown [11] that paramagnetic EDMs

are dominated by the two-photon exchange mechanism,

and the leading chiral behavior of the hadronic part of

the diagram is given by the t-channel exchange by ⇡
0
, ⌘.

CP violation due to ✓ comes through the ⇡
0
(⌘)N̄N cou-

pling. The result, in combination with the experimental

bound [3], sets the independent limit on |✓| < 3 ⇥ 10
�8

,

which is still subdominant to the limit provided by dn(✓).

The second source of the SM CP -violation is the cele-

brated Kobayashi-Maskawa (KM) phase �KM [12], which

is now observed to rather good accuracy in a plethora

of flavor transitions in B and K mesons. Observations

are often matched by rather precise theoretical predic-

tions, starting from [13]. The predictions of EDM-like

observables induced by �KM thus far can be summarized

by two adjectives: small and uncertain. The suppression

comes from the necessity to involve at least twoW -bosons

and multiple loops [14–16] involving all three generations

of quarks. As a result, short distance contributions to

quark EDMs do not exceed 10
�33

e cm level [17]. At

the same time, it is clear that long-distance nonpertur-

bative contributions, typically described as a combina-

tion of two transitions changing strangeness by one unit,

�S = ±1, dominate dn and nucleon-nucleon forces [18–

22]. More recent estimate [23] places dn in the ballpark

of few ⇥ 10
�32

e cm with a wide order-of-magnitude ex-

pected range. It is fair to say that magnitudes of dn and

nucleon-nucleon forces (that feeds into the nuclear-spin-

dependent atomic EDMs) cannot be accurately predicted

at this point.

What is the size of paramagnetic EDMs induced by

�KM? Recent estimates of de [24] (dominated again by

long-distance e↵ects) converge at the tiniest value of

⇠ 6 ⇥ 10
�40

e cm, presumably with considerable uncer-

tainties corresponding to hadronic modelling of quark

loops. This result is subdominant to the CS estimate

due to the two-photon exchange mechanism in combi-

nation with �S = ±1 transitions [25], that corresponds

to equivalent de of ⇠ 10
�38

e cm. To introduce useful

notations, this is EW
2
EM

2
order e↵ect, where EW/EM

stands for electroweak/electromagnetic.

In this Letter we demonstrate that the dominant con-

tribution to paramagnetic EDMs associated with the KM

CP -violation is given by the semileptonic CS induced

in EW
3
order. It has an unambiguous answer in the

flavor-SU(3) chiral limit, and is calculable to ⇠ 30% ac-

curacy that can be further improved. Remarkably, the

result reaches the level of ⇠ 10
�35

e cm in terms of the

de equivalent, which is three orders of magnitude larger

than previously believed [25].

Our starting point is the expression for the equivalent
de that follows from atomic/molecular theory, and de-

fines the linear combination of two Wilson coe�cients

constrained by the most precise paramagnetic EDM mea-

surements performed with ThO molecule:

d
equiv
e

= de + CS ⇥ 1.5⇥ 10
�20

e cm, (1)

where e is the positron charge. Current experimental

limit [3] stands as |dequiv
e

| < 1.1⇥10
�29

e cm. As per con-

vention, CS is defined with the Fermi constant factored

out, and �5 corresponds to the
1
2�µ(1� �5) definition of
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Hadronic CP violation à paramagnetic EDMs
• CP violation in top-Higgs sector – Barr Zee diagrams, h-g mediation 

 

• Theta term, light quark, mu EDMs -- g-g mediation

• Kobayashi-Maskawa CP-violation – Z (and WW) mediation

2

semileptonic operators of the form,

L = Cs

SP

GF
p
2
ēi�5e(p̄p+ n̄n) + Ct

SP

GF
p
2
ēi�5e(p̄p� n̄n) ,

(1)
where e, n and p refer to the electron, neutron and
proton fields, respectively, and Cs,t

SP
are the couplings

for the singlet and triplet operators, respectively. The
subscript SP denotes the nucleon-scalar and electron-
pseudoscalar two-fermion bilinears. The semileptonic op-
erators CSP in (1) arise in the absence of any nuclear
spin and are coherently enhanced by the number of nu-
cleons in the nucleus, singling them out as the primary
contributors to paramagnetic EDMs beyond the electron
EDM, � i

2
deēFµ⌫�µ⌫�5e. Hadronic contributions to de,

e.g. from the QCD ✓ term, have been considered pre-
viously [19, 20], but the semileptonic operators above
provide the leading sensitivity in atomic and molecu-
lar experiments. In particular, the leading source of
paramagnetic EDMs due to the CKM phase is the CSP

operator [21], mediated by two-photon exchange. Be-
yond the Standard Model and extensions involving extra
elementary-particle generations, new sources of CP vio-
lation that manifest themselves in paramagnetic systems
predominantly via the semileptonic operator CSP , rather
than de, may arise in supersymmetric models and multi-
Higgs doublet models (for a general overview of these
types of models, see e.g. [4]).

In paramagnetic EDM experiments, the induced shift
of atomic/molecular energy levels under an applied ex-
ternal electric field Eext can be written in the form

�E = �deEe↵ �Wc


Cs

SP
+

✓
Z �N

A

◆
Ct

SP

�
+ · · · , (2)

where the factors Ee↵ and Wc are quantities that depend
on the small Eext, and Z, N and A denote the proton,
neutron and total nucleon numbers of the nucleus, re-
spectively. They are enhanced by a relativistic violation
of the Schi↵ theorem and (for molecular systems) the po-
larisability [6], and are now known to good precision for a
variety of molecular species, see e.g. [22–28]. The existing
null result from the ACME experiment [14], using ThO,
leads to the following 90% confidence-level constraint on
the e↵ective CSP coupling averaged over the p� n com-
position of the Th nucleus:

|Cs

SP
� 0.22Ct

SP
| = |0.39Cp

SP
+ 0.61Cn

SP
| < 7.3⇥ 10�10 .

(3)
Quite generically, for hadronic sources of CP violation,
the de contribution to atomic/molecular EDMs is sub-
dominant to CSP .

The semileptonic operators in (1) can in turn be in-
duced by the leading sources of CP violation at the
hadronic level,

Lhadronic = �
i

2
dnn̄Fµ⌫�

µ⌫�5n�
i

2
dpp̄Fµ⌫�

µ⌫�5p

+ ḡ(0)
⇡NN

N̄⌧aN⇡a + ḡ(1)
⇡NN

N̄N⇡0 + ... , (4)

FIG. 1. (Color online) CP -violating leading order (LO)
semileptonic processes involving the exchange of a ⇡0 or ⌘
meson. The grey vertex denotes the anomalous coupling (at
the one-loop level) of the ⇡0/⌘ meson to the electromagnetic
field, while the magenta vertex denotes the CP -violating cou-
pling with the nucleon.

where N = (p, n)T is the nucleon doublet, dn,p refers to

nucleon EDMs, and ḡ(0,1)
⇡NN

are the isovector and isoscalar
CP -odd pion-nucleon couplings, respectively. This for-
mula can also be generalised to include CP -odd inter-

actions with the octet ⌘ meson, ⌘N̄(ḡ(0)
⌘NN

+ ḡ(1)
⌘NN

⌧3)N .
Thus we aim to determine

CSP = CSP (dn, dp, ḡ
(0)

⇡/⌘NN
, ḡ(1)

⇡/⌘NN
, . . .) , (5)

that can be induced in particular by two-photon exchange
processes (see Figs. 1, 2 and 3). The hadronic-scale inter-
actions in (4) are in turn induced by more fundamental
sources, such as ✓QCD, quark EDMs and chromo EDMs
[4]. In what follows, we will examine the leading de-
pendencies in (5), and explore the induced sensitivity to
fundamental CP -violating hadronic sources.

2. SEMILEPTONIC OPERATORS INDUCED BY

CP-ODD NUCLEON POLARISABILITIES

When the underlying sources of CP violation are
hadronic and the nuclei of interest are spinless, the
semileptonic couplings CSP in (1) can be generated by
two-photon exchange processes via CP -odd nucleon po-
larisabilities,

L = �
1

4
N̄(�s + ⌧3�t)NFµ⌫

eFµ⌫ (6)

= (�pp̄p+ �nn̄n)E ·B . (7)

Application of an external electric field E leads to an in-
duced magnetic dipole moment �E, and the sign in (6,7)
is chosen to coincide with the CP -even polarisability con-
vention, L = ↵polE

2/2.
A complete calculation of the CP -odd nuclear scalar

polarisability is a complicated task, but at the nucleon
level it can be performed using chiral perturbation the-
ory. The leading order (LO) terms arise at O(m�2

⇡
) in

3

FIG. 2. (Color online) CP -violating next-to-leading order
(NLO) semileptonic processes involving a charged-pion loop.
The magenta vertex again denotes the CP -violating coupling
of the pion with the nucleon, while the black vertex denotes
the coupling of the electromagnetic field to the nucleon mag-
netic dipole moment. The analogous processes with the ma-
genta vertex interchanged with the other pion-nucleon vertex
are implicit.

the pion mass m⇡, as shown in Fig. 1, and are given by

�LO

p(n)
= �

↵

⇡F⇡m2
⇡

"
ḡ(1)
⇡NN

+(�)ḡ(0)
⇡NN

+
ḡ(0)
⌘NN
p
3

m2
⇡
F⇡

m2
⌘
F⌘

#
,

(8)
where F⇡ ⇡ 92MeV is the pion decay constant, and F⌘

is the octet ⌘-meson decay constant, which we take to
be F⌘ ⇡ F⇡. The appearance of the factor ↵/⇡ in this
formula is due to the one-loop nature of the ⇡0�� vertex.
We have neglected small isospin-breaking e↵ects, ⌘ � ⌘0

and ⇡0
� ⌘ mixings, as well as ḡ(1)

⌘NN
, as only the singlet

contribution of ⌘ proves to be important in the concrete
examples below. We next address the first formally sub-
leading correction, which emerges from a charged-pion
loop that interacts with E, while the magnetic moment
of the nucleon interacts with B (see Fig. 2). The next-
to-leading order (NLO) result arises at O(m�1

⇡
), and is

given by

�NLO

k
=

↵gAḡ
(0)

⇡NN

4F⇡mNm⇡

⇢
�µn/µN for k = p ,
µp/µN for k = n ,

(9)

where gA ⇡ 1.3 is the axial triplet coupling, mN is the
nucleon mass, µn,p are the nucleon magnetic dipole mo-
ments, and µN is the nuclear magneton. We observe that
this answer is numerically rather larger than would have
naively been expected, in part as a result of the large val-
ues of µn,p. Also, the CP -odd polarisabilities of neutrons
and protons have the same sign, as µn is negative while
µp is positive, and so add constructively.

To compute the contributions to CSP , we next per-
form the integral over the diphoton loop, which is soft
compared to the hadronic scales that were integrated out
above, and average the result over the nucleon content in
a nucleus. We find, to logarithmic accuracy, a known
result for the semileptonic operator in the contact ap-
proximation:

GF
p
2
C(�)

SP
= �

✓
Z

A
�p +

N

A
�n

◆
3↵me

2⇡
ln

✓
M

me

◆
. (10)

FIG. 3. (Color online) CP -violating µ � d semileptonic pro-
cesses with internal nuclear excitations. The black vertex
again denotes the interaction of the electromagnetic field with
the nucleon magnetic dipole moment µ, while the cyan ver-
tex denotes the interaction with the nucleon electric dipole
moment d. The analogous processes with the black and cyan
vertices interchanged are implicit.

In the limit of a pointlike and structureless nucleus, the
renormalisation scale M is di↵erent for the LO and NLO
contributions: for the LO terms, it is set by the ⇡/⌘
form factor (i.e., a hadronic scale related to the ⇢ meson
mass m⇢), while for the NLO process, M ⇡ m⇡ due to
the presence of the pion propagators in the charged-pion
loop. The nuclear size, which sets the value of the atomic
s�pmixing matrix element induced by CSP [29, 30], does
not play any role in regularising the integral, which ex-
tends down to ⇠ me (corresponding to an interaction on
the length scale ⇠ m�1

e
). The modification of the forms

of relativistic atomic wavefunctions on the super-nuclear
length scales (8Z↵me)�1 . r . m�1

e
in su�ciently heavy

atoms (see, e.g., [30]) gives rise to non-logarithmic cor-
rections to atomic s�p mixing matrix elements. We also
note that going beyond the logarithmic approximation in
the NLO case would prevent the factorisation of the pho-
ton and pion loops, and would necessitate a full two-loop
calculation.
Thus far, we have neglected the fact that the internal

nuclear dynamics may a↵ect the values of the � coe�-
cients, and also lead to additional contributions to the
CSP coe�cients. For example, the pion loop calculation
in the NLO process above assumed that the intermedi-
ate nucleon propagator is “free”, while in reality it will be
modified by nuclear in-medium e↵ects. Moreover, EDMs
of individual nucleons will lead to semileptonic operators
that do not reduce to the simple E · B nuclear polaris-
ability form — we now address these types of processes.

3. SEMILEPTONIC OPERATORS INDUCED BY

NUCLEON EDMS

Let us consider the semileptonic processes in Fig. 3
that correspond to the exchange of two photons between
atomic electrons and nucleons, with internal nuclear ex-
citations. In this case, we assume that the nucleons pos-
sess both magnetic (µ) and electric (d) dipole moments,
as defined in (4) for the latter. We consider the simplest

couplings can be consistently ignored.1 For thresholds in
the TeV range or above, measurement of the Higgs decay
rate itself probably provides the best sensitivity to !.
However, EDMs can provide sensitivity to the CP-odd
threshold ~!.

The ensuing correction to the SM h ! !! width,

"SM
!! ¼ m3

h

4"

!
#

4"

"
2
########
ASM

2v

########
2
’ 9:1 keV; (3)

takes the form

R!! ¼ "!!
"SM
!!

’
########1" ch

v2

!2

8"

#ASM

########
2
þ
########~ch

v2

~!2

8"

#ASM

########
2
;

(4)

where ASMðmh ¼ 125 GeVÞ ’ AW þ At ’ "6:5 is propor-
tional to the SM amplitude [14]. The deviations in thewidth
are of Oð1Þ for !=

ffiffiffiffiffi
ch

p & 5 TeV. Note that since the
CP-odd operator does not interfere with the SM amplitude,
the corresponding correction to the diphoton branching
ratio is necessarily positive and scales as Oð1=~!4Þ.

A. EDM limit on contact operators

Current experiments [8–11] already probe the EDMs of
elementary particles at a level roughly commensurate with
two-loop electroweak diagrams [15], with the chirality of
light particles protected by factors of meðqÞ=v. Thus it is

useful to introduce the auxiliary quantity dð2lÞf that quanti-

fies this two-loop benchmark EDM scale,

dð2lÞf ' jej#mf

16"3v2 ) dð2lÞe ’ 2:5( 10"27e ) cm: (5)

One observes that dð2lÞe has already been surpassed by the
current electron EDM limits [8,9], with the mercury [10]

and neutron [11] EDMs not lagging far behind for dð2lÞq [15].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop (as seen in Fig. 1),

di ¼ ~ch
jejmf

4"2 ~!2
ln
!
!2

UV

m2
h

"
(6)

¼ dð2lÞf ( ~ch
#=ð4"Þ (

v2

~!2
ln
!
!2

UV

m2
h

"
; (7)

with explicit dependence on the UV scale!UV. If this scale
is identified with ~!, then using the current bound on the
electron EDM, jdej< 1:05( 10"27e cm [8], we find

~! * 50
ffiffiffiffiffi
~ch

p
TeV: (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion that CP-odd corrections are
limited by

#R!!ð~chÞ & 1:6( 10"4: (9)

However, this conclusion can be relaxed in specific UV
completions. As we discuss in the next subsection, the
logarithm lnð~!2=m2

hÞ & 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cutoff, while certain degeneracies
may provide more significant qualitative changes to the
implications of EDM limits.

B. UV-complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling
to VL fermions

We will now consider a specific UV completion which
allows the full two-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged VL
fermion c with mass mc transforming as ð1; 1; Qc Þ under
SUð3Þ ( SUð2Þ ( Uð1Þ, and a singlet Ŝwith a Higgs-portal
interaction with the Higgs doublet H [16], leads to the
following Lagrangian:

LSHc ¼ $c i!$ði@$ " eQcA$Þc
þ $c ½mc þ ŜðYS þ i!5

~YSÞ+c þLHS: (10)

The terms inLHS contain scalar kinetic terms and describe
the Higgs-portal interaction between Ŝ and H via the
following potential:

VHS ¼ "$2
HH

yH þ %HðHyHÞ4 þ 1

2
m̂2

SŜ
2

þ AHyHŜ" BŜþ %S
4
Ŝ4: (11)

CP-odd couplings of the Higgs proportional to the combi-
nation A ~YS are generated, while the term linear in Ŝ can
always be adjusted to ensure that hŜi ¼ 0. We retain only
the photon contribution of the Jc$ vector current, as the Z

FIG. 1. Left: the diagram that gives rise to fermionic EDMs
via the insertion of the operator hF ~F from Eq. (2). Right: the
two-loop diagram that leads to fermion EDMs in the model
involving a VL lepton, c , coupled to a singlet, S, that mixes with
the Higgs. The cross on the scalar line indicates that this
contribution is proportional to the mixing term, A, in the scalar
potential.

1For recent studies of the CP properties of the hZZ and hWW
couplings, see, e.g., Refs. [12,13] and references therein.
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the left-handed current:

LeN = CS

GFp
2
(ēi�5e)(p̄p+ n̄n). (2)

Our goal is to calculate CS(�KM).

Leading chiral order CS calculation— Because of

the conservation of the electron chirality in the SM, it is

clear that CS / me. This in turn rules out single pho-

ton exchange (EM penguin) as origin of meēi�5e, and

one would need either a two-photon mechanism [11, 25]

or the EW penguin Z-boson exchange/W -box diagram.

The most crucial property of EW penguins is that al-

though they are formally of the second order in weak

interactions, their size is enhanced by the heavy top, so

that the result scales as G
2
F
m

2
t
. EW penguins

1
induce

Bs,d ! µ
+
µ
�

decays, and dominate the dispersive part

of KL ! µ
+
µ
�

amplitude. Dropping the vector part of

the lepton current (as not leading to meēi�5e), and in-

tegrating out heavy W,Z, t particles, one can concisely

write down the semileptonic operator as

LEWP = PEW ⇥ ē�µ�5e⇥ s̄�
µ
(1� �5)d+ (h.c.), (3)

where

PEW =
GFp
2
⇥ V

⇤
ts
Vtd ⇥

↵EM(mZ)

4⇡ sin
2
✓W

I(xt), (4)

and the loop function is given by [26]

I(xt) =
3

4

✓
xt

xt � 1

◆2

log xt+
1

4
xt�

3

4

xt

xt � 1
, xt =

m
2
t

m2
W

.

(5)

These results are well established, and unlike the case of

four-quark operators, the subsequent QCD evolution of

(3) introduces only small corrections (see e.g. [27]).

The most convenient representation of the CKM ma-

trix is when �KM enters mostly in Vtd. It enters the imag-

inary part of PEW and couples the axial vector current

of leptons to the s̄�µ(1� �5)d� d̄�µ(1� �5)s quark cur-

rent. This current can create/annihilate CP -even com-

bination of the neutral kaons that (in neglection of small

✏K) can be identified with KS field. Same operator in the

muon channel induces KS ! µ
+
µ
�
meson decay [28, 29].

Within chiral perturbation theory, the axial vector cur-

rent of leptons is treated as an external left-handed cur-

rent, which gives rise to

LUee = � if
2
0

2
PEW ⇥ ē�µ�5e⇥ Tr

⇥
h
†
(@

µ
U)U

†⇤
+ (h.c.),

(6)

where U is the exponential of the meson octet M , U =

exp[2iMf
�1
0 ], in our convention it transforms as U

0
=

1 As is well known, EW penguins must also include W -box dia-
grams, and we include both.

e e

N N

e e

d s

q q

d s

K

W

W

t t

Z

g

FIG. 1: EW3 order diagram that dominates in the chiral limit.
The top vertex is the CP -odd, P -even KS ēi�5e generated in
EW2 order, and the bottom vertex is CP -even, P -odd KSN̄N
coupling generated at EW1 order.

LUR
†
, and hij = �i2�j3. At linear order, this leads to

@µK ⇥ ē�
µ
�5e, and upon application of the equation of

motion for electrons we arrive to

LKee = �2
p
2f0meēi�5e (KS ⇥ ImPEW +KL ⇥ RePEW) .

(7)

In this expression, f0 is the meson coupling constant, that

in the SU(3) symmetric limit is equal to ' 134MeV,

and we follow Ref. [30] conventions. Subsequent ms-

dependent corrections renormalize this coupling to f0 !
fK ' 160MeV. While other s-quark containing reso-

nances may also contribute, the neutral kaon exchange,

Fig. 1, will give the only m
�1
s

-enhanced contribution in

the chiral limit.

We now need to find out how the neutral kaons couple

to the nucleon scalar densities, p̄p and n̄n that occur due

to �S = ±1 transitions in the EW
1
order. Instead of

attempting such calculation from first principles (see e.g.
[31]) we will use flavor SU(3) relations and connect this

coupling to the s-wave amplitudes of hadronic decays of

strange hyperons, following [30]. It is well known that

empirical �I = 1/2 rule holds for hyperon decays, and

the leading order SU(3) relations fit s-wave amplitudes

with O(10%) accuracy. It is strongly suspected that these

amplitudes are indeed induced by strong penguins (SP),

although this assumption is not crucial for us. With that,

one can write down the two types of couplings consistent

with (8L, 1R) transformation properties:

LSP = �aTr(B̄{⇠†h⇠, B})�bTr(B̄[⇠
†
h⇠, B])+(h.c.). (8)

In this expression, B is the baryon octet matrix, and

⇠ = exp[iMf
�1
0 ]. Assuming a and b to be real, and taking
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LO chiral contribution:
• T-channel pion exchange gives

implying                                sensitivity. However, adding exchange of 
h8, 

The effect can completely cancel within error bars on nucleon sigma 
term sN. 

where we have taken mu/md to be 0.48. Importantly, these (the ratio and
0.017 answer) are QCD normalization scale independent quantities.

Previous work [2] have calculated the vertex between ⇡0 and electron at
two EM loops. The field of ⇡

0 is taken at almost zero momentum. We
roughly have, following the old reference:

L = ⇡
0(ēi�5e)⇥

me

F⇡
⇥ 3↵2

2⇡2
log

✓
4⇡F⇡

me

◆
= ⇡

0(ēi�5e) = 3.5⇥ 10�7
. (8)

Integrating ⇡
0 we get our e↵ective operator,

L = ✓ ⇥ 1

m2
⇡

⇥ 0.017⇥ 3.5⇥ 10�7(ēi�5e)(n̄n� p̄p)

= (ēi�5e)(n̄n� p̄p)⇥ 3.2⇥ 10�13
✓

MeV2
. (9)

This translates, after the division by GF/21/2, into the value of Ct
S as

C
t
S = 3.9⇥ 10�2 ⇥ ✓ (10)

Comparing this to the limit, we get

|✓| < 8.4⇥ 10�8
. (11)

This is actually not bad at all... Sensitivity to ✓ via de is negligible [3].

**** Added in 2019. Relative contribution of eta.

Assuming that the pion contribution to nuclear-electron CP-odd interac-
tion is normalized to 1, we can estimate the change of the e↵ect under the
inclusion of ⌘8.

1 ! 1 +
1

3

f
2
⇡m

2
⇡

f 2
⌘m

2
⌘

hNucleus|ūu+ d̄d|Nucleusi
hNucleus|ūu� d̄d|Nucleusi

(12)

Since the nucelus has more down quarks than up quarks the sign of the
second term is negative, and intereference is destructive.

The numerator will be eventually proportional to the nucleon sigma term,
�N = mu+md

2 hN |ūu+d̄d|Ni, and the denominator is proportional to mu�md
2 hp|ūu�

d̄d|pi. The numerator is known ”sort of”, while the denominator is known
decently well.

2

where we have taken mu/md to be 0.48. Importantly, these (the ratio and
0.017 answer) are QCD normalization scale independent quantities.

Previous work [2] have calculated the vertex between ⇡0 and electron at
two EM loops. The field of ⇡

0 is taken at almost zero momentum. We
roughly have, following the old reference:

L = ⇡
0(ēi�5e)⇥

me

F⇡
⇥ 3↵2

2⇡2
log

✓
4⇡F⇡

me

◆
= ⇡

0(ēi�5e) = 3.5⇥ 10�7
. (8)

Integrating ⇡
0 we get our e↵ective operator,

L = ✓ ⇥ 1

m2
⇡

⇥ 0.017⇥ 3.5⇥ 10�7(ēi�5e)(n̄n� p̄p)

= (ēi�5e)(n̄n� p̄p)⇥ 3.2⇥ 10�13
✓

MeV2
. (9)

This translates, after the division by GF/21/2, into the value of Ct
S as

C
t
S = 3.9⇥ 10�2 ⇥ ✓ (10)

Comparing this to the limit, we get

|✓| < 8.4⇥ 10�8
. (11)

This is actually not bad at all... Sensitivity to ✓ via de is negligible [3].

**** Added in 2019. Relative contribution of eta.

Assuming that the pion contribution to nuclear-electron CP-odd interac-
tion is normalized to 1, we can estimate the change of the e↵ect under the
inclusion of ⌘8.

1 ! 1 +
1

3

f
2
⇡m

2
⇡

f 2
⌘m

2
⌘

hNucleus|ūu+ d̄d|Nucleusi
hNucleus|ūu� d̄d|Nucleusi

(12)

Since the nucelus has more down quarks than up quarks the sign of the
second term is negative, and intereference is destructive.

The numerator will be eventually proportional to the nucleon sigma term,
�N = mu+md

2 hN |ūu+d̄d|Ni, and the denominator is proportional to mu�md
2 hp|ūu�

d̄d|pi. The numerator is known ”sort of”, while the denominator is known
decently well.
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Continuing this line, we have

1 ! 1� 1

3

f
2
⇡m

2
⇡

f 2
⌘m

2
⌘

⇥ md �mu

md +mu
⇥ A⇥ �N

md�mu

2 hp|ūu� d̄d|pi ⇥ (N � Z)
(13)

I am going to take the following parameters, f⌘ = f⇡; �N = 35 MeV1;
md�mu

2 hp|ūu� d̄d|pi = 2.5MeV/2; mu/md = 0.48 .

Then we have,
1 ! 1� 0.88 ' 0.12. (14)

If, however, we include error bars for �N = 35 MeV, the result can easily
cross 0. At that level of accurcy one would need to include ⌘0 as well - which
is not quite calculable. Everyone understands that lattice can be wrong, and
the the answer for sigma nucleon is e.g. 45 MeV, which would bring it on
the other side from 0. So - because of all that, there is no limit on ✓ from
simple meson exchange.

It is also not clear if such simple meson exchange is the dominant mech-
anism. It is quite possible that a nuclear polarizability - combination of
excitation via an EDM and de-excitation via a magnetic moment, and vice
vers, is in fact dominant. So, more work is actually required to make some
progress here.

Estimates of the nuclear polaizability contributions

I will start from the calculation of the double-photon exchange between
a heavy nucleon and an electron. We later try to generalize it to the nucleus.

Consider a neutron or a proton that has a an EDM and MDM. We can
write it in a closed form,

L =
1

2
F↵�N̄�↵�(µ⇥ 1 + d⇥ i�5)N (15)

Initial 4-momenta of the electron and nucleon are p1 and p2, final are p3

and p4. Loop momentum will be called q. There are two diagrams, with
direct and ”crossed” photon exchange. We use Feynman gauge and write
the whole amplitude as (forget an overall sign for now. If the contribution is

1This is a recent lattice QCD value that is also showing s̄s over a nucleon to be con-
sistent with 0.
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2 hp|ūu� d̄d|pi = 2.5MeV/2; mu/md = 0.48 .

Then we have,
1 ! 1� 0.88 ' 0.12. (14)

If, however, we include error bars for �N = 35 MeV, the result can easily
cross 0. At that level of accurcy one would need to include ⌘0 as well - which
is not quite calculable. Everyone understands that lattice can be wrong, and
the the answer for sigma nucleon is e.g. 45 MeV, which would bring it on
the other side from 0. So - because of all that, there is no limit on ✓ from
simple meson exchange.

It is also not clear if such simple meson exchange is the dominant mech-
anism. It is quite possible that a nuclear polarizability - combination of
excitation via an EDM and de-excitation via a magnetic moment, and vice
vers, is in fact dominant. So, more work is actually required to make some
progress here.

Estimates of the nuclear polaizability contributions

I will start from the calculation of the double-photon exchange between
a heavy nucleon and an electron. We later try to generalize it to the nucleus.

Consider a neutron or a proton that has a an EDM and MDM. We can
write it in a closed form,

L =
1

2
F↵�N̄�↵�(µ⇥ 1 + d⇥ i�5)N (15)

Initial 4-momenta of the electron and nucleon are p1 and p2, final are p3

and p4. Loop momentum will be called q. There are two diagrams, with
direct and ”crossed” photon exchange. We use Feynman gauge and write
the whole amplitude as (forget an overall sign for now. If the contribution is

1This is a recent lattice QCD value that is also showing s̄s over a nucleon to be con-
sistent with 0.

3

2

semileptonic operators of the form,

L = Cs

SP

GF
p
2
ēi�5e(p̄p+ n̄n) + Ct

SP

GF
p
2
ēi�5e(p̄p� n̄n) ,

(1)
where e, n and p refer to the electron, neutron and
proton fields, respectively, and Cs,t

SP
are the couplings

for the singlet and triplet operators, respectively. The
subscript SP denotes the nucleon-scalar and electron-
pseudoscalar two-fermion bilinears. The semileptonic op-
erators CSP in (1) arise in the absence of any nuclear
spin and are coherently enhanced by the number of nu-
cleons in the nucleus, singling them out as the primary
contributors to paramagnetic EDMs beyond the electron
EDM, � i

2
deēFµ⌫�µ⌫�5e. Hadronic contributions to de,

e.g. from the QCD ✓ term, have been considered pre-
viously [19, 20], but the semileptonic operators above
provide the leading sensitivity in atomic and molecu-
lar experiments. In particular, the leading source of
paramagnetic EDMs due to the CKM phase is the CSP

operator [21], mediated by two-photon exchange. Be-
yond the Standard Model and extensions involving extra
elementary-particle generations, new sources of CP vio-
lation that manifest themselves in paramagnetic systems
predominantly via the semileptonic operator CSP , rather
than de, may arise in supersymmetric models and multi-
Higgs doublet models (for a general overview of these
types of models, see e.g. [4]).

In paramagnetic EDM experiments, the induced shift
of atomic/molecular energy levels under an applied ex-
ternal electric field Eext can be written in the form

�E = �deEe↵ �Wc


Cs

SP
+

✓
Z �N

A

◆
Ct

SP

�
+ · · · , (2)

where the factors Ee↵ and Wc are quantities that depend
on the small Eext, and Z, N and A denote the proton,
neutron and total nucleon numbers of the nucleus, re-
spectively. They are enhanced by a relativistic violation
of the Schi↵ theorem and (for molecular systems) the po-
larisability [6], and are now known to good precision for a
variety of molecular species, see e.g. [22–28]. The existing
null result from the ACME experiment [14], using ThO,
leads to the following 90% confidence-level constraint on
the e↵ective CSP coupling averaged over the p� n com-
position of the Th nucleus:

|Cs

SP
� 0.22Ct

SP
| = |0.39Cp

SP
+ 0.61Cn

SP
| < 7.3⇥ 10�10 .

(3)
Quite generically, for hadronic sources of CP violation,
the de contribution to atomic/molecular EDMs is sub-
dominant to CSP .

The semileptonic operators in (1) can in turn be in-
duced by the leading sources of CP violation at the
hadronic level,

Lhadronic = �
i

2
dnn̄Fµ⌫�

µ⌫�5n�
i

2
dpp̄Fµ⌫�

µ⌫�5p

+ ḡ(0)
⇡NN

N̄⌧aN⇡a + ḡ(1)
⇡NN

N̄N⇡0 + ... , (4)

FIG. 1. (Color online) CP -violating leading order (LO)
semileptonic processes involving the exchange of a ⇡0 or ⌘
meson. The grey vertex denotes the anomalous coupling (at
the one-loop level) of the ⇡0/⌘ meson to the electromagnetic
field, while the magenta vertex denotes the CP -violating cou-
pling with the nucleon.

where N = (p, n)T is the nucleon doublet, dn,p refers to

nucleon EDMs, and ḡ(0,1)
⇡NN

are the isovector and isoscalar
CP -odd pion-nucleon couplings, respectively. This for-
mula can also be generalised to include CP -odd inter-

actions with the octet ⌘ meson, ⌘N̄(ḡ(0)
⌘NN

+ ḡ(1)
⌘NN

⌧3)N .
Thus we aim to determine

CSP = CSP (dn, dp, ḡ
(0)

⇡/⌘NN
, ḡ(1)

⇡/⌘NN
, . . .) , (5)

that can be induced in particular by two-photon exchange
processes (see Figs. 1, 2 and 3). The hadronic-scale inter-
actions in (4) are in turn induced by more fundamental
sources, such as ✓QCD, quark EDMs and chromo EDMs
[4]. In what follows, we will examine the leading de-
pendencies in (5), and explore the induced sensitivity to
fundamental CP -violating hadronic sources.

2. SEMILEPTONIC OPERATORS INDUCED BY

CP-ODD NUCLEON POLARISABILITIES

When the underlying sources of CP violation are
hadronic and the nuclei of interest are spinless, the
semileptonic couplings CSP in (1) can be generated by
two-photon exchange processes via CP -odd nucleon po-
larisabilities,

L = �
1

4
N̄(�s + ⌧3�t)NFµ⌫

eFµ⌫ (6)

= (�pp̄p+ �nn̄n)E ·B . (7)

Application of an external electric field E leads to an in-
duced magnetic dipole moment �E, and the sign in (6,7)
is chosen to coincide with the CP -even polarisability con-
vention, L = ↵polE

2/2.
A complete calculation of the CP -odd nuclear scalar

polarisability is a complicated task, but at the nucleon
level it can be performed using chiral perturbation the-
ory. The leading order (LO) terms arise at O(m�2

⇡
) in
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Photon box diagrams:
• Diagrams are IR divergent but regularized by Fermi momentum in the 

Fermi gas picture of a nucleus (intermediate N is above Fermi surface). 

• Nucleon EDM (theta) is very much a triplet, 

Full answer including chiral NLO. (accidental cancellation of p0 and h)

Limit on theta term from ThO (electron EDM) experiment:

* Improved by a factor of ~ 2 in Dec 2022, q < 1.5 * 10-8 

We can now join ”everything together to get the following estimate of the
photon-box-induced electron-nucleon interaction, averaged over the momen-
tum of a nucleon inside the nucleus.

L = ēi�5eN̄N ⇥ 2me ⇥ 4↵⇥ dµ⇥ 6.2

⇡pF
= ēi�5eN̄N ⇥ 2.4⇥ 10�4 ⇥ dµ (34)

The average value of the MDM⇥EDM product is

dµ =
Z

A
µpdp +

A� Z

A
µndn =

e

2mp
⇥ (1.08dp � 1.16dn) (35)

When we talk about dn,p induced by theta, they are of di↵erent sign, and
if chiral log is dominant, they are exactly opposite. MDMs are of di↵erent
sign, so there is a constructive interference. We are going to take dp ' �dn '
1.6⇥10�3

efm✓, in line with old and new estimates. (With our choice of units,
↵ = e

2
/(4⇡)).

This way we get,

dµ ' 8.5⇥ 10�10 MeV�2 ⇥ ✓, (36)

and the estimate for the singlet Cs
S is

C
s
S ⇠ 0.025⇥ ✓ or |✓| < 3⇥ 10�8

. (37)

Conclusion: despite all the uncertainties, the ”photon box” diagrams
(evaluated here with the Fermi sea picture of the nucleus) seems to provide
better senestivity to theta than the pion and eta exchange, where there is a
strong cancellation...

Bonus: We can also derive the indirect bound on the EDM of proton.
We pretty much have

C
s
S ⇠

p
2

GF
⇥ 2.4⇥ 10�4 ⇥ 4⇡↵

2mp
⇥ 1.08⇥ dp

e
< 7.3⇥ 10�10 =) dp < 10�23

ecm

(38)
I believe it is about a factor of 50 less stringent than the result derived from
mercury EDM.
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nucleon EDMs, ḡ(0)
⇡NN

and ḡ(0)
⌘NN

induced by ✓̄:

dp(n)(✓̄) = �(+)
gAḡ

(0)

⇡NN
e

4⇡2F⇡

ln

✓
M

m⇡

◆
, (19)

ḡ(0)
⇡NN

(✓̄) = �
m⇤✓̄

F⇡

hp|ūu� d̄d|pi , (20)

ḡ(0)
⌘NN

(✓̄) = �
m⇤✓̄
p
3F⌘

hp|ūu+ d̄d� 2s̄s|pi , (21)

where m⇤ = mumd/(mu + md), and the strange quark
contribution to m⇤ has been neglected. The renormal-
isation scale of the chiral loop [35] can be taken to be
M ⇠ 4⇡F⇡, and the sub-logarithmic corrections have
been neglected. [For a more in-depth treatment, one can
use QCD sum-rule or lattice estimates of dN (✓̄).] The
nucleon matrix elements are known to some accuracy
from hadron spectroscopy and lattice calculations. Using
(md �mu)hp|ūu � d̄d|pi ⇡ 2.5 MeV, (md +mu)hp|ūu +
d̄d|pi/2 ⇡ 38 MeV and hp|s̄s|pi ⇡ 0.1hp|ūu + d̄d|pi

[36, 37], one finds ḡ(0)
⇡NN

⇡ �0.017✓̄, in good agreement

with e.g. [38, 39], and ḡ(0)
⌘NN

⇡ 5ḡ(0)
⇡NN

. With these val-

ues, we observe that the LO contributions of ⇡0 and ⌘
exchange to CSP almost cancel for the p � n compo-
sition of the Th nucleus, as well as other heavy nuclei
(but not light nuclei). Given the considerable degree of
uncertainty in the quark bilinear matrix elements, this
cancellation can suppress the naive ⇡0 exchange contri-
bution by an order of magnitude or more, rendering the
LO result intrinsically very uncertain in the case of heavy
nuclei. However, we can combine the NLO contribution
together with the µ � d contribution to obtain the fol-
lowing prediction for a heavy nucleus with A ⇠ 200 and
Z/A ⇠ 0.4 (which includes nuclei of experimental interest
such as Th, Tl, Hg, Hf and Xe):

CSP (✓̄) ⇡
⇥
0.1LO + 1.0NLO + 1.7(µd)

⇤
⇥ 10�2✓̄ ⇡ 0.03 ✓̄ ,

(22)
where the numbers in parentheses show the LO, NLO
and µ�d contributions to CSP , respectively. Each num-
ber here can vary by as much as 50% (or more in the
case of the LO contribution) upon varying M and other
parameters. (We also note that the IR scale in the NLO
contribution, m⇡, can be renormalised somewhat inside
the nucleus due, e.g., to Pauli blocking, and a shift in the
in-medium value for m⇡.) With these caveats, the above
result translates to the following limit on the QCD vac-
uum angle,

|✓̄|ThO . 3⇥ 10�8 . (23)

This is only a factor of about 100 less stringent than the
limit extracted from neutron EDM experiments.

5. DISCUSSION

In this paper, we have shown that paramagnetic EDM
experiments, by virtue of their dramatic recent gains, are

TABLE I. Summary of bounds on CP -violating hadronic pa-
rameters from the paramagnetic ThO EDM experiment de-
rived in the present work, as well as from EDM experiments
with neutrons and diamagnetic atoms.

System |dp| (e · cm) |ḡ(1)⇡NN | |d̃u � d̃d| (cm) |✓̄|
ThO 2⇥ 10

�23
4⇥ 10

�10
2⇥ 10

�24
3⇥ 10

�8

n — 1.1⇥ 10�10 5⇥ 10�25 2.0⇥ 10�10

Hg 2.0⇥ 10�25 1⇥ 10�12 a 5⇥ 10�27 a 1.5⇥ 10�10

Xe 3.2⇥ 10�22 6.7⇥ 10�8 3⇥ 10�22 3.2⇥ 10�6

a These limits can formally be null within nuclear uncertainties.

now exhibiting levels of sensitivity to hadronic sources of
CP violation that are becoming competitive with exper-
iments focusing directly on the nuclear Schi↵ moment
and the neutron EDM. When the source of CP viola-
tion is localised in the hadron sector, it is well known
that the top-quark/Higgs two-loop mechanism can give
a large contribution to de [40]. On the other hand, as
our paper demonstrates, when the main mediation mech-
anism is via light quarks, as is the case with the theta
term and light-quark (C)EDMs, the main pathway for
communicating CP violation to the EDMs of paramag-
netic systems is via the CSP operator in (1), while de can
be neglected. This sensitivity arises through the two-
photon generation of CSP that is coherently enhanced
by the number of nucleons. We have considered two
distinct two-photon exchange mechanisms for generat-
ing such CP -violating semileptonic operators: (i) the ex-
change of ⇡0 and ⌘ mesons between atomic electrons and
nucleons, as well as charged-pion loops generating CP -
odd nucleon polarisabilities, and (ii) CP -odd nuclear ex-
citations due to nucleon EDMs.
In Table I, we summarise our newly derived bounds

from the paramagnetic ThO EDM experiment on the
various CP -violating hadronic parameters and compare
with bounds from EDM experiments with neutrons and
diamagnetic atoms. The most precise result in our anal-

ysis is the constraint on the isoscalar ḡ(1)
⇡NN

coupling,
Eq. (17), where the e↵ect comes from ⇡0 exchange be-
tween unpaired electrons and the nucleus. This result
is devoid of any substantial nuclear uncertainties, since
the e↵ect is dominated by a bulk property of the nu-
cleus. When converted to a limit on light-quark CEDMs,
the uncertainty is significant [32], but future progress in
lattice QCD calculations may reduce this substantially.
The limits on other parameters, including ✓̄, are sensitive
to the assumptions about nuclear structure. We chose
the simplest possible Fermi-gas model of the nucleus, ex-
ploiting the coherent nature of the e↵ect, as CSP is con-
tributed to by all nucleons inside a nucleus. We observe
that for the µ � d contribution, there is a logarithmic
enhancement, and the result (13) is also somewhat en-
hanced for the nucleon states close to the Fermi surface,
which in turn are expected to be more sensitive to the de-
tails of the discrete nuclear structure. This suggests that
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bution by an order of magnitude or more, rendering the
LO result intrinsically very uncertain in the case of heavy
nuclei. However, we can combine the NLO contribution
together with the µ � d contribution to obtain the fol-
lowing prediction for a heavy nucleus with A ⇠ 200 and
Z/A ⇠ 0.4 (which includes nuclei of experimental interest
such as Th, Tl, Hg, Hf and Xe):

CSP (✓̄) ⇡
⇥
0.1LO + 1.0NLO + 1.7(µd)

⇤
⇥ 10�2✓̄ ⇡ 0.03 ✓̄ ,

(22)
where the numbers in parentheses show the LO, NLO
and µ�d contributions to CSP , respectively. Each num-
ber here can vary by as much as 50% (or more in the
case of the LO contribution) upon varying M and other
parameters. (We also note that the IR scale in the NLO
contribution, m⇡, can be renormalised somewhat inside
the nucleus due, e.g., to Pauli blocking, and a shift in the
in-medium value for m⇡.) With these caveats, the above
result translates to the following limit on the QCD vac-
uum angle,

|✓̄|ThO . 3⇥ 10�8 . (23)

This is only a factor of about 100 less stringent than the
limit extracted from neutron EDM experiments.

5. DISCUSSION

In this paper, we have shown that paramagnetic EDM
experiments, by virtue of their dramatic recent gains, are

TABLE I. Summary of bounds on CP -violating hadronic pa-
rameters from the paramagnetic ThO EDM experiment de-
rived in the present work, as well as from EDM experiments
with neutrons and diamagnetic atoms.

System |dp| (e · cm) |ḡ(1)⇡NN | |d̃u � d̃d| (cm) |✓̄|
ThO 2⇥ 10

�23
4⇥ 10

�10
2⇥ 10

�24
3⇥ 10

�8

n — 1.1⇥ 10�10 5⇥ 10�25 2.0⇥ 10�10

Hg 2.0⇥ 10�25 1⇥ 10�12 a 5⇥ 10�27 a 1.5⇥ 10�10

Xe 3.2⇥ 10�22 6.7⇥ 10�8 3⇥ 10�22 3.2⇥ 10�6

a These limits can formally be null within nuclear uncertainties.

now exhibiting levels of sensitivity to hadronic sources of
CP violation that are becoming competitive with exper-
iments focusing directly on the nuclear Schi↵ moment
and the neutron EDM. When the source of CP viola-
tion is localised in the hadron sector, it is well known
that the top-quark/Higgs two-loop mechanism can give
a large contribution to de [40]. On the other hand, as
our paper demonstrates, when the main mediation mech-
anism is via light quarks, as is the case with the theta
term and light-quark (C)EDMs, the main pathway for
communicating CP violation to the EDMs of paramag-
netic systems is via the CSP operator in (1), while de can
be neglected. This sensitivity arises through the two-
photon generation of CSP that is coherently enhanced
by the number of nucleons. We have considered two
distinct two-photon exchange mechanisms for generat-
ing such CP -violating semileptonic operators: (i) the ex-
change of ⇡0 and ⌘ mesons between atomic electrons and
nucleons, as well as charged-pion loops generating CP -
odd nucleon polarisabilities, and (ii) CP -odd nuclear ex-
citations due to nucleon EDMs.
In Table I, we summarise our newly derived bounds

from the paramagnetic ThO EDM experiment on the
various CP -violating hadronic parameters and compare
with bounds from EDM experiments with neutrons and
diamagnetic atoms. The most precise result in our anal-

ysis is the constraint on the isoscalar ḡ(1)
⇡NN

coupling,
Eq. (17), where the e↵ect comes from ⇡0 exchange be-
tween unpaired electrons and the nucleus. This result
is devoid of any substantial nuclear uncertainties, since
the e↵ect is dominated by a bulk property of the nu-
cleus. When converted to a limit on light-quark CEDMs,
the uncertainty is significant [32], but future progress in
lattice QCD calculations may reduce this substantially.
The limits on other parameters, including ✓̄, are sensitive
to the assumptions about nuclear structure. We chose
the simplest possible Fermi-gas model of the nucleus, ex-
ploiting the coherent nature of the e↵ect, as CSP is con-
tributed to by all nucleons inside a nucleus. We observe
that for the µ � d contribution, there is a logarithmic
enhancement, and the result (13) is also somewhat en-
hanced for the nucleon states close to the Fermi surface,
which in turn are expected to be more sensitive to the de-
tails of the discrete nuclear structure. This suggests that
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Revisiting nonperturbative calculations of dn

§ Use chiral PT, rely on IR enhanced contributions, use some pheno 
input (or lattice input) to infer p-NN CP-odd couplings. (Crewther, 
DiVecchia, Veneziano, Witten, ++, 1980++)

§ MP, A. Ritz: 1999-2002: apply QCD sum rules to estimate the OPE 
coefficients in the external CP-violating and EM backgrounds, 
including the theta term. 

§ Preferable direction: set up proper lattice QCD calculations. Various 
nucleon matrix elements are calculated,  but observables that are very 
sensitive to the quark mass, such as dn(q ) prove to be difficult. 

§ Ema, Gao, MP, Ritz – to appear. Investigate chiral properties of the 
correlator of nucleon interpolating currents, re-derive dn(q ). 
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Nonperturbative calculations of nucleon 
(hadronic) observables

§ Interpolating h currents can be formulated in terms of 3 quarks with 
appropriate quantum numbers. 

§ P(x) can be calculated at short distances, using perturbative QCD + 
nonperturbative condensates. On the other hand, due to quark-hadron 
duality, we expect that P(Q2) has also representation in terms of the 
hadronic resonances and their matrix elements.  QCD sum rules hopes 
to match the two at some intermediate/borderline scale, Q2 ~ GeV2.

§ Lattice QCD can perform these calculations “honestly”, x à large

remaining terms are proportional to the following combination,

〈N |qgsGσq − m2
0qq|N〉, (3.45)

which unfortunately cannot be estimated using chiral techniques, and requires
genuine QCD input. A naive vacuum saturation hypothesis in (3.45) leads to
the vanishing of this expression. This is a rather fundamental problem which
limits the precision of various approaches, e.g. those based on the use of low
energy theorems to estimate (3.45) [62,63], to obtain the dependence of ḡπNN

on the CEDMs.

This limited applicability is one problem that currently afflicts the chiral ap-
proach. A more profound issue is that the terms enhanced by the chiral log,
while conceptually distinct, are not necessarily numerically dominant. Indeed
there are infrared finite corrections to (3.41) which, while clearly subleading
for mπ → 0, are not obviously so in the physical regime. This dependence on
threshold corrections has been observed to provide a considerable source of
uncertainty [64] (see also [65]).

3.3 QCD sum-rules techniques

An alternative to considering the chiral regime directly, is to first start at
high energies, making use of the operator product expansion, and attempt
to construct QCD sum rules [66] for the nucleon EDMs, or the CP -odd pion
nucleon couplings. This approach in principle allows for a systematic treatment
of all the sources, and is motivated in part by the success of such approaches to
the calculation of baryon masses [67] and magnetic moments [68]. For a recent
review of some aspects of the application of QCD sum rules to nucleons, see
e.g. Ref. [69].

The basic idea is familiar from other sum-rules applications. One considers the
two-point correlator of currents, ηN (x), with quantum numbers of the nucleon
in question in a background with nonzero CP-odd sources, an electromagnetic
field Fµν , and also a soft pion field πa,

Π(Q2)= i
∫

d4xeip·x〈0|T{ηN(x)ηN (0)}|0〉 /CP,F,π, (3.46)

where Q2 = −p2, with p the current momentum. It is implicit here that the
soft pion field admits PCAC reduction, and then in the case of CEDM sources
corresponds to an external field coupled to the operator q̄gsGσq−m2

0q̄q, as in
(3.44-3.45).

25

Fµν

\CP

ηn(0)ηn(x)

Fig. 4. A leading contribution to the neutron EDM within QCD sum rules. Sensi-
tivity to the CP -violating source enters through the two soft quark lines which lead
to a dependence on the chiral condensate.

baryon sum rules in external fields is that the single pole terms, corresponding
to transitions between the neutron and excited states, are not exponentially
suppressed by the Borel transform and thus provide the leading contribution
from the excited states, with a coefficient which is not sign definite. This must
then be treated as a phenomenological parameter to be determined from the
sum rules themselves. In this approximation, we then find [73,58,74],

Πphen
(d) =

i

2
{Fσγ5, /p}

(
λ2dnmn

(p2 − m2
n)2

+
A

p2 − m2
n

+ · · ·
)

, (3.48)

Πphen
(ḡ) = 2/p

(
λ2ḡπNNmn

(p2 − m2
n)2

+
A′

p2 − m2
n

+ · · ·
)

, (3.49)

where the constants A, A′ parametrise the single-pole contributions. One can
then go further and construct a full continuum model to match the high-Q2

asymptotics, but as discussed below this refinement has minimal impact in
comparison to the single pole terms A and A′. We now turn to the calculation
of the OPE for dn and ḡπNN .

• Nucleon EDM calculations

The OPE for dn is conveniently constructed in practice by first computing the
generalized quark propagator, expanded in the presence of the background
field, the CP-odd sources, and also the vacuum condensates. One then com-
putes the relevant contractions in (3.46) to obtain the OPE to the appropriate
order. Although it would take us too far afield to describe this procedure in
detail, we can exhibit some of the dominant physics by looking at just one
class of diagrams which arise in evaluating the OPE for (3.46). In particular,

27
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Nucleon Interpolating Currents

§ b = 0, h = j1, is the so-called QCD current i.e. the current used the 
most in the lattice QCD community. It takes its origin in the naïve 
quark model, because it is  j1 that has a nonrelativistic limit.

§ b = -1 can be called “Ioffe current”, and it has been used the most in 
various QCD SR literature of 1980s-1990s. 

§ b = + 1 found to be the most convenient choice (MP and Ritz) for the 
neutron EDM calculations created by external sources. 

the two same flavor quarks (down quark for neutron) are contracted. One can always move to this
basis by the Fierz identity. We first note that

 T
i C� j =

(
 T
j C� i, for � = 1, �µ�5, �5,

� T
j C� i, for � = �µ, �µ⌫ .

(1.3)

It then follows that only the latter two structures are important due to the antisymmetric color
indices. To go further, we require that the nucleon is parity even, defined by

 (P )(x) = +�0 (xP ), (1.4)

where xµ
P = (t,�~x). Under this parity we assume that the quarks are also even. By noting that

(dTi C�µdj)P = �dTi C�0�µ�0dj, (dTi C�µ⌫dj)P = �dTi C�0�µ⌫�0dj, (1.5)

we arrive at the two interpolation functions

j̃(n)1 = ✏ijk(d
T
i C�µdj)�µ�5uk, j̃(n)2 = ✏ijk(d

T
i C�µ⌫dj)�µ⌫�5uk. (1.6)

We next show that these are equally written in terms of j(n)1 and j(n)2 . The Fierz identity tells us that

 �̄ = �1

4


(�̄ ) + (�̄�µ )�µ +

1

2
(�̄�µ⌫ )�µ⌫ � (�̄�µ�5 )�µ�5 + (�̄�5 )�5

�
. (1.7)

We then obtain

j̃(n)1 =
1

2

⇣
j(n)1 � j(n)2 � ✏ijk(d

T
i C�µ�5uj)�µdk � ✏ijk(d

T
i C�µuj)�µ�5dk

⌘
, (1.8)

j̃(n)2 =
3

2

⇣
j(n)1 + j(n)2

⌘
� 1

2
✏ijk

�
dTi C�µ⌫uj

�
�µ⌫�5dk. (1.9)

We can further use the Fierz identity of the latter two currents with respect to uj and dk to obtain

✏ijk(d
T
i C�µ�5uj)�µdk + ✏ijk(d

T
i C�µuj)�µ�5dk = �j(n)1 + j(n)2 , (1.10)

✏ijk
�
dTi C�µ⌫uj

�
�µ⌫�5dk = �j(n)1 � j(n)2 . (1.11)

Therefore we conclude that

j̃(n)1 = j(n)1 � j(n)2 , j̃(n)2 = 2
⇣
j(n)1 + j(n)2

⌘
. (1.12)

The former agrees with [1]. We may define the �-dependent interpolation function as

⌘n = j(n)1 + �j(n)2 . (1.13)

It then follows that

⌘n(� = 1) =
1

2
✏ijk(d

T
i C�µ⌫dj)�µ⌫�5uk, ⌘n(� = �1) = ✏ijk(d

T
i C�µdj)�µ�5uk. (1.14)

We may also note that

⌘n(� = 1) = 4✏ijk
⇥�
dTRiCuRj

�
dRk �

�
dTLiCuLj

�
dLk

⇤
, (1.15)

⌘n(� = �1) = 4✏ijk
⇥�
dTRiCuRj

�
dLk �

�
dTLiCuLj

�
dRk

⇤
. (1.16)

In particular, the former has separated left-handed and right-handed currents in this basis.
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QCD sum rule with � = 1 and naive quark model
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1 Nucleon interpolation function

1.1 Interpolation function and nucleon correlator

It is argued in literatures that there are two interpolation functions that have the same quantum
number as the nucleons, given for neutron by

j(n)1 = 2✏ijk
�
dTi C�5uj

�
dk, j(n)2 = 2✏ijk

�
dTi Cuj

�
�5dk, (1.1)

where i, j, k are the color indices and C is the charge conjugate matrix that satisfies

(�µ)T C = �C�µ, (1.2)

such that  TC has the same Lorentz transformation property as  ̄. It satisfies CT = �C and in the
Weyl representation it is explicitly given by C = i�0�2. We now show that indeed these two are the
irreducible interpolation functions. For this purpose, it is more convenient to consider the basis that

1
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Recap of dn results (QCD SR, b  = 1)
§ Use odd-number of g-matrices for the SR, and spurious phases of the 

2-point functions will never appear

§ Simple estimate based on the leading term of the OPE has a strong 
correspondence with the NQM (according to “Ioffe formula”, the 
coefficient outside the square brackets below = 1). 

§ Here, c stands for another vacuum condensate, EM susceptibility of 
the QCD vacuum, 

Numerically, c ~ - 6 GeV-2. 

the use of additional sum rules, and the coupling λ is conveniently obtained
from the well-known sum rules for the two-point correlation function of the
nucleon currents in the CP even sector (see e.g. [69] for a review).

Rather than reviewing the full analysis, let us consider a simple estimate ob-
tained from the leading order terms in the OPE of (3.59) a la Ioffe’s derivation
of the nucleon mass formula [67]. We set A = 0, and taking M = mn ∼ 1 GeV,
we divide the sum rule (3.59) by the standard CP -even sum rule for λ ob-
tained for the Lorentz structure /p and β = 1 (the choice β = −1 in the latter
sum rule leads to a similar result). The resulting estimate takes the following
form,

dest
n =

8π2|〈qq〉|
m3

n

[
−

2χm∗

3
e(θ̄ − θind)

+
1

3
(4dd − du) +

χm2
0

6
(4edd̃d − eud̃u)

]

, (3.60)

where θind again is a linear combination of d̃q/mq (3.35). The coefficient in
front of the square brackets in (3.60) is very close to 1, given Ioffe’s estimate
for mn, m3

n % 8π2|〈qq〉| [67]. Indeed, this estimate shows no deviation at all
from the naive quark model result for dn(dq)! Using Vainshtein’s value for χ,
χ = −Nc/(4π2f 2

π) ∼ −9 GeV−2 [76], obtained using pion-dominance for the
longitudinal part of certain anomalous triangle diagrams, along with the Ioffe
formula for mn, the estimate for dn(θ̄) becomes

dest
n =

em∗θ̄

2π2f 2
π

, (3.61)

which coincides with the chiral estimate (3.41) if gA〈p|q̄τ 3q|p〉 ln(Λ/mπ) is of
order 2, where gA % gπNNfπ/mn. Needless to say that within the accuracy of
both methods the two estimates coincide. If θ̄ is removed by PQ symmetry,
then within the same approximation the resulting estimate reads

dest
n =

4

3
dd −

1

3
du −

2m2
πe

mn(mu + md)

(
2

3
d̃d +

1

3
d̃u

)
, (3.62)

where the approximate relation m2
0 % −m2

n has been used, along with (mu +
md)|〈qq〉| = f 2

πm2
π, are used. One immediately sees that the CEDM contribu-

tions are significant and comparable in magnitude in fact to the effects induced
by quark EDMs.

We can give a more precise numerical treatment by making use of the following
parameter values: For the quark condensate, we take a central value of
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��A =
16⇡Z2

↵↵d✏
2
µ
2
�A

m
4
A0

h0|q̄�µ⌫q|0i = Fµ⌫ ⇥ eQqh0|q̄q|0i ⇥ �
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Back to basics: QCD + theta term

Do a standard iso-singlet quark chiral rotation to eliminate qGGdual.

m* is the reduced quark mass, mumd(mu+md). The expectation value of 
the second term over the vacuum here is the vacuum energy dependence 
on the theta angle (and upon the rescaling the axion mass squared.) 
Expectation value of the second term over nucleon, gives theta-
dependence of nucleon mass. 

All observables that depend on q should also depend on m*  and vanish in 
the chiral limit! Also, observables do not depend on how you distribute 
q, putting some parts to quark mass, and some to GGdual. 

Investigation of nucleon current correlator

Maxim Pospelov

Abstract
We are interested in the following question: are all nucleon currents equally

suitable for the investigation of chirality-sensitive matrix elements? We show

that only � = ±1 lead to the physical answers for the correlator of nucleon

currents. At � = 0, for example, the observables depend on theta-angle even

if one takes a chiral limit, and that is not physical.

1. Which observables?

Let us recall that if we take a QCD Lagrangian with real masses and a theta

term, all theta dependent observables cancel in the chiral limit. Lagrangian

LQCD = �1

4
(G

a
µ⌫)

2
+

X

u,d,

q̄(iDµ�µ �mq)q +
✓g

2
s

32⇡2
G

a
µ⌫G̃

a
µ⌫ (1)

can be transformed into a complex singlet mass term that has real and imag-

inary parts, .

! m⇤(ūi�5u+ d̄i�5d)✓ +m⇤(ūu+ d̄d)✓
2
/2 + ... (2)

Any physical observable dependent on ✓ vanishes in mq ! 0 limit.

In particular, the vacuum expectation value of the second term here cor-

responds to axion mass (aka topological susceptibility),

d
2
(Evac)/d✓

2
= m

2
af

2
a = �m⇤h0|ūu+ d̄d|0i (3)

If instead of the vacuum, we substitute a nucleon, we get the nucleon

mass dependence on theta,

d
2
(mN)/d✓

2
= �m⇤hN |ūu+ d̄d|Ni. (4)

Likewise all observable that are linear in ✓ will be 0 in m⇤ ! 0 limit: CP -odd

⇡ �NN coupling, neutron EDM etc.
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QCD + theta term + Nucleon Source

§ This is the basis for studying nucleon properties. It is almost QCD, but 
not quite! 

§ Let us perform a chiral rotation, as on the previous slide. If this 
transformation would lead to 

then it is an innocent transformation, and the new phase can be 
reabsorbed into the source. Otherwise, q dependence will persist even in 
mq à0 limit. 
§ This is true only for b =1 and b =-1 current choices. It is specifically 

not true for the lattice current b =0. It has unphysical LßàR quark 
transitions. 

For now let’s study the theory that is QCD plus external sources:

L = �1

4
(G

a
µ⌫)

2
+

X

u,d,

q̄(iDµ�µ�mq)q+
✓g

2
s

32⇡2
G

a
µ⌫G̃

a
µ⌫+Source⇥(j1+�j2)+h.c.

(5)

with the familiar definition of j1,2.

Expanding twice in the source, the QCD SR/lattice study the correlator

⇧(p) ⇠ (j1+�j2), (j̄1+�j̄2) exp(ipx)d
4
x. The point is of course that (j1+�j2)

is in general not invariant under chiral rotations, even if mq ! 0.

Therefore, one can calculate 2-point functions in the presence of ✓-background,

in general. We are going to A. Chirally transform by angle theta, so that in

(5) the GG̃ term vainishes, but the phase gets “on the inside” of j1 and j2

currents, B. calculate the ⇧(p) in the mq ! 0 limit.

If we get the following answer

⇧(p) ⇠ pµ�µ + 1⇥ exp(2i↵�5)⇥ (theta� independent function), (6)

then physical observables (mass) can be made ✓-independent by absorbing

the phase into the overall phase of the nucleon wave function.

If on the other hand, we get

⇧(p) ⇠ pµ�µ + 1(c1 ⇥ exp(2i↵1�5) + c2 exp(2i↵2�5) + ...)⇥ f(p
2
), (7)

where ↵1 and ↵2 are di↵erent phases. (In reality we are going to see that

↵1 ⇠ ✓ and ↵2 ⇠ �✓.) In this case, the phase cannot be absorbed into the

overall phase.

Another way of saying it, if a particle propagator contains m1 ⇥ 1 +

m5 ⇥ i�5, the physical mass is
p

m2
1 +m2

5. So in the first example, the

result is ↵1 independent, and in the second examples it is proportional to

|c1 exp(2i↵1) + c2 exp(2i↵2)|.

2. Two-point function at nonzero ✓

As a matter of exercise, let’s take � = 0, and rotate both up and down fields

by (singlet) angle theta:

j1 = 2✏
abc

d
a
(d

bT
C�5u

c
) ! 2✏

abc
e
i✓�5d

a
(d

bT
C�5e

i2✓�5u
c
) (8)

2

For now let’s study the theory that is QCD plus external sources:

L = �1

4
(G

a
µ⌫)

2
+

X

u,d,

q̄(iDµ�µ�mq)q+
✓g

2
s

32⇡2
G

a
µ⌫G̃

a
µ⌫+Source⇥(j1+�j2)+h.c.

(5)

with the familiar definition of j1,2.

If

Source⇥ (j1 + �j2) ! Source⇥ e
i↵�5 ⇥ (j1 + �j2) (6)

then the new phase can be re-absorbed into the source.

Expanding twice in the source, the QCD SR/lattice study the correlator

⇧(p) ⇠ (j1+�j2), (j̄1+�j̄2) exp(ipx)d
4
x. The point is of course that (j1+�j2)

is in general not invariant under chiral rotations, even if mq ! 0.

Therefore, one can calculate 2-point functions in the presence of ✓-background,

in general. We are going to A. Chirally transform by angle theta, so that in

(5) the GG̃ term vainishes, but the phase gets “on the inside” of j1 and j2

currents, B. calculate the ⇧(p) in the mq ! 0 limit.

If we get the following answer

⇧(p) ⇠ pµ�µ + 1⇥ exp(2i↵�5)⇥ (theta� independent function), (7)

then physical observables (mass) can be made ✓-independent by absorbing

the phase into the overall phase of the nucleon wave function.

If on the other hand, we get

⇧(p) ⇠ pµ�µ + 1(c1 ⇥ exp(2i↵1�5) + c2 exp(2i↵2�5) + ...)⇥ f(p
2
), (8)

where ↵1 and ↵2 are di↵erent phases. (In reality we are going to see that

↵1 ⇠ ✓ and ↵2 ⇠ �✓.) In this case, the phase cannot be absorbed into the

overall phase.

Another way of saying it, if a particle propagator contains m1 ⇥ 1 +

m5 ⇥ i�5, the physical mass is
p

m2
1 +m2

5. So in the first example, the

result is ↵1 independent, and in the second examples it is proportional to

|c1 exp(2i↵1) + c2 exp(2i↵2)|.
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Unphysical q dependence of some correlators
§ Under the isosinglet chiral transformation, the lattice current changes

§ This results in a rephasing-invariant theta-dependent pieces in the 
OPE: 

§ If the correlator P(M2) is matched to physical observables (e.g. 
hadron masses, they will acquire q-dependence in the strict chiral 
limit.)

§ Absolutely same problems will persist in the dn(q) calculation 
performed with the “lattice current”. There will be dependences, in 
general, on unphysical phases, related to the chirality breaking built 
into the interpolating current itself. 

2. Two-point function at nonzero ✓

As a matter of exercise, let’s take � = 0, and rotate both up and down fields

by (singlet) angle theta:

j1 = 2✏
abc

d
a
(d

bT
C�5u

c
) ! 2✏

abc
e
i✓�5d

a
(d

bT
C�5e

i2✓�5u
c
) (9)

I use the following definition of C operator,

C = �2�0, C
†
= C,CC

†
= 1, C

⇤
= C

T
= �C,C�

T
µC = ��µ (10)

The conjugate of the transformed j1 is

j̄1 = 2✏
abc

d̄
a
e
i✓�5(ū

c
e
i2✓�5�5Cd̄

bT
). (11)

The correlator can be written in the following simple form. Since we are

going to take only parts of the propagator that are diagonal in color, we can

take the color sum explicitly, which gives

⇧(x)/24 = e
i✓�5Sde

i✓�5 ⇥ Tr(e
i2✓�5Sue

i2✓�5�5CS
T
d C�5) (12)

+e
i✓�5Sde

i2✓�5�5CS
T
uC�5e

i2✓�5Sde
i✓�5 .

This is a nice expression that we can easily calculate noting that the propa-

gator is

Sq = b1xµ�µ + b2hq̄qi; �5CS
T
q C�5 = Sq, (13)

where b1,2 are easily calculable coe�cients and scalar functions of x.

We are going to look at 1 or �5 parts of the correlator. So we have, either

b
2
1b2 (leading term) or b

3
2 contributions. We easily calculate both. The result

reads:

⇧(x)/24 = b
3
2hq̄qi3(4 cos(4✓)ei2✓�5 + e

i6✓�5) (14)

+b2b
2
1hq̄qix2

(6e
i2✓�5 + e

�i2✓�5)

This is enough to see that there is indeed a residual ✓-dependence of the

correlator. For example b2b
2
1 term (which is the leading term in the OPE

sense), upon the rephasing, has ✓ dependence as |6 + e
�i4✓|, which would

force a conclusion that particle masses will start depending on ✓ angle even

in the mq ! 0 limit.

3

*****

We can generalize the calculation of the two-point function to the arbi-
trary beta. Repeating what we had before, and calculating the leading term
in front of the 1 and �5, we arrive to the following expression

⇧(x) ⇠ hq̄qi 1
x6

⇥
�
6(1� �

2)ei2✓�5 + (1� �)2e�i2✓�5
�

(15)

We notice of course that at ✓ = 0, we reproduce the beta dependence, 7 �
2� � 5�2, for the known sum rule in the 1 channel (see e.g. [1]). Of course,
only � = ±1 has a removable phase, and is known very well, at this order
� = +1 correlator vanishes as it requires three L ! R transitions. We can
generalize the mq = 0 two-point function to get the analogue of formula
(6.1b) of [1]):

aM
4

16
⇥
�
6(1� �

2)ei2✓�5 + (1� �)2e�i2✓�5
�
... (16)

= |�|2ei↵�5(mN + i�5mN5)e
i↵�5 ⇥ exp(�m

2
N/M

2),

where a is |hq̄qi|⇥ 4⇡2.

It is easy to see that at ✓1 level one can hide a phase into undetermined
↵ or mN5. At quadratic level, we must have a m

2
N,phys = m

2
N + m

2
N5. It is

easy to see that the L.H.S. will have the dependence on ✓, and in particular
the ✓

2 dependence of the nucleon mass in the chiral limit. In my opinion,
this “disqualifies” the use of the � = 0 current for the calculations of the
✓-dependent quantities.

3. Two-point function at nonzero ⇡
0 backgrounds

One can ask a very similar question regarding the ⇡0 background, in the limit
of vanishing momentum of pion fields. As we know, the answer for scattering
amplitude for vanishing momenta has to be ⇠ mq. Do we have a chance for
a physical answer in this case?

I am accustomed to think about the inclusion of pion fields at zero mo-
mentum via the commutator,

hA, ⇡0|O|Bi = i

2F⇡
hA|[O, ū�0�5u� d̄�0�5d]|Bi. (17)

4
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Repeating dn(q) calculation for Ioffe current
§ Original calculation by Ritz and MP was using b = +1, and a channel 

with odd number of gamma-matrices so that the EDM correlator is 
insensitive to the phase of the two-point function:

§ For b = -1, one needs to use even number of gamma matrices, and 
evaluate both two- and three-point function. 

§ Assuming that ground state (i.e. the neutron) contributes dominantly 
to P(M2), after some calculations, we derive the sum rule result for 
this channel:

§ The results, b = -1 and b = +1, are A. having the same sign, B. 
consistent, C. predict EDM at O(10-16 e cm q) level, D. Same sign as 
the chiral estimate answer, a little smaller value. 

��A =
16⇡Z2↵↵d✏2µ2

�A

m4
A0

h0|q̄�µ⌫q|0i = Fµ⌫ ⇥ eQqh0|q̄q|0i ⇥ �

�2
I
exp{i↵�5}

i

p/�mn �O
exp{i↵�5} = i�2

I
exp{i↵�5}

(p/+mn)O(p/+mn)

(p2 �mn)2
exp{i↵�5}(52)

�2
I

i

p/�mn �O
= i�2

I

(p/+mn)O(p/+mn)

(p2 �mn)2
! i�2

I

(p2 �mn)2
⇥ 1

2
{p/, {p/,O}} (53)

=
i�2

I

(p2 �mn)2
⇥ (µnFµ⌫ � dnF̃µ⌫)(2p↵pµ�⌫↵ + p2�µ⌫)

References

[1] Y. Ema, T. Gao and M. Pospelov, doi:10.1016/j.physletb.2022.137496
[arXiv:2207.01679 [hep-ph]].

[2] A. Caputo, H. Liu, S. Mishra-Sharma, M. Pospelov and J. T. Ruderman,
[arXiv:2206.07713 [hep-ph]].

[3] Y. Ema, T. Gao and M. Pospelov, JHEP 07, 106 (2022)
doi:10.1007/JHEP07(2022)106 [arXiv:2205.11532 [hep-ph]].

[4] R. S. Bedi, T. Gherghetta and M. Pospelov, Phys. Rev. D 106, no.1, 1
(2022) doi:10.1103/PhysRevD.106.015030 [arXiv:2205.07948 [hep-ph]].

[5] J. Elam et al. [REDTOP], [arXiv:2203.07651 [hep-ex]].

[6] J. Arrington, J. Barrow, B. Batell, R. Bernstein, N. Blinov, S. J. Brice,
R. Culbertson, P. deNiverville, V. Di Benedetto and J. Eldred, et al.
[arXiv:2203.03925 [hep-ph]].

[7] S. Biswas, L. Gerchow, H. Luetkens, T. Prokscha, A. Antognini,
N. Berger, T. E. Cocolios, R. Dressler, P. Indelicato and K. Jungmann,
et al. Appl. Sciences 12, no.5, 2541 (2022) doi:10.3390/app12052541

7

With this, we can get our total result, and it is consistent with Yohei and
Ting,

dn = �✓µn


3

4⇡2

m⇤

�hq̄qi

✓
log(M2

/⇤2
IR)�

Qd

Qu

◆
� 2m⇤

mn

�
. (50)

(And again, di↵erent extraction of ↵ gives slightly di↵erent results.) With
this, I get to dn ⇠ ✓ ⇥ 5⇥ 10�17

e cm, but I got to play a little bit more with
the numerics.

Appendix

We list here various functions of x transformed to Fourier space (F),
then to Euclid �p

2 ! Q
2 & Borel transformed (B). I follow NSVZ review in

Fortschritte der Physik.

BF 1

x8
=

i⇡
2

263
Bp4 ln(�p

2) = � i⇡
2

253
M

4 (51)

BF 1

x6
= � i⇡

2

23
Bp2 ln(�p

2) =
i⇡

2

23
M

2 (52)

(53)
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Conclusions
§ Strong CP problem is not challenged by recent works, in my opinion. 

Standard lore (decoupling of singlet meson creates non-derivative 
vertices of GGdual) stands. 

§ Among theoretical approaches to the strong CP problem, axion 
solution is the most natural/elegant, as it ensures smooth decoupling 
of heavy scales. Models based on discrete symmetries do not have 
these properties and are susceptible to extra amount of CP-violating 
à have to be carefully constructed all the way to the Planck scale. 

§ The paramagnetic EDMs (experiments looking for de) are also induced 
by the semi-leptonic operators of (electron pseudoscalar)*(nucleon 
scalar) type. CS is induced by theta term via a two-photon exchange 
resulting in sensitivity |q| < 1.5×10-8. Further progress by O(100) for 
de type of experiments will bring the sensitivity to hadronic CP 
violation on par with current dn limits.
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Conclusions, continued

§ Chiral properties of the nucleons interpolating currents, under U(1)A 
rotations, are crucial for obtaining observables such as those 
dependent on q, and vanishing in m*à0 limit.

§ The “lattice currents” do not transform covariantly under U(1)A 
rotations, leading to spurious dependences of correlators on 
unphysical angles. I.E.: all existing lattice QCD calculations of dn(q ) 
have a wrong starting point. 

§ The physical behavior of nucleon correlators is guaranteed with b =1 
and b = -1 current choices. We have repeated the dn(q ) with b = -1 
current choice, achieving results consistent with Pospelov and Ritz, 
1999 (magnitude and sign).  We explicitly check that there is no 
dependence on unphysical phases. Lattice should learn from this!


