

Synergies from Beauty, Top, Z and Drell-Yan Measurements in SMEFT

Cornelius Grunwald, Gudrun Hiller, Lara Nollen, Kevin Kröninger

LHC EFT WG Meeting

February 19, 2024

LHC SM particles $175 \text{ GeV} = \mu_t$ 13 TeV $A \gg \mu_t$ 10^{16} TeV Energy

effective extension of the SM Lagrangian for energies much higher than the SM scale:

Standard Model effective field theory (SMEFT)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \underbrace{\frac{1}{\Lambda^2} \sum_{i} C_i^{(6)} O_i^{(6)}}_{i} + \dots}_{\text{BSM physics}} + \dots \qquad \begin{array}{c} \Lambda : \text{ energy scale} \\ O_i : \text{ higher dimensional operators} \\ C_i : \text{ Wilson coefficients} \quad \tilde{C}_i = \frac{v^2}{\Lambda^2} C_i \end{array}$$

model-independent probes of BSM phenomena by constraining values of the Wilson coefficients

19.02.24 | Cornelius Grunwald

Global SMEFT fits

- SMEFT gained a lot of popularity in recent years
- 59 dimension-six operators (2499 when considering flavor structure)
- EFT interpretations of single measurements can only constrain a small number of Wilson coefficients

global fits combining
 measurements from different
 physics sectors

INSPIRE HEP	SPIRE HEP literature \vee smeft "standard model effective field theory"					
	Liter	ature A	uthors	Jobs	Seminars	Conferences
Date of paper	982	esults 📑 c	ite all			Citation Summary
	Renormalization Group Evolution of the Standard Model Dimension Six Oper Gauge Coupling Dependence and Phenomenology Rodrigo Alonso (UC, San Diego), Elizabeth E. Jenkins (UC, San Diego), Aneesh V. Manohar (UC, S Trott (CERN) (Dec 6, 2013)					
a statistica de la constatistica de la constatistica de la constatistica de la constatistica de la constatistic						
2011 2024	Pul	pdf <i>O</i> DOI	(2014) 159 • e	e-Print: 1312.20	l4 [hep-ph]	a reference search
Number of authors	Re	normalization	Group Evol	ution of the	Standard Mode	el Dimension Six Oper
Single author 22 10 authors or less 91	1 YU 0 Eliz Pul	kawa Dependi abeth E. Jenkins (ilished in: <i>JHEP</i> 0'	ence UC, San Diego) I (2014) 035 • (), Aneesh V. Mar e-Print: 1310.483	nohar (UC, San Dieg 38 [hep-ph]	go), Michael Trott (CERN) (
Exclude RPP	ß	pdf 🕜 DOI	[∃ cite	🗟 claim		a reference search
Exclude Review of Particle Physics 982	Re Fo	normalization malism and la	Group Evol ambda Dep	ution of the endence	Standard Mode	el Dimension Six Oper
Document Type	Eliz Pul	abeth E. Jenkins (lished in: <i>JHEP</i> 10	UC, San Diego)) (2013) 087 • 6), Aneesh V. Mar e-Print: 1308.262	nohar (UC, San Dieg 27 [hep-ph]	go), Michael Trott (CERN) (,
article 74	2	pdf 🕜 DOI	[∃ cite	🗟 claim		R reference search

Synergies in SMEFT fits

JHEP 06 (2021) 010

Top and beauty synergies in SMEFT-fits at present and future colliders

Synergies in SMEFT fits

JHEP 06 (2021) 010

Top and beauty synergies in SMEFT-fits at present and future colliders

arXiv: 2304.12837

More Synergies from Beauty, Top, \boldsymbol{Z} and Drell-Yan Measurements in SMEFT

Cornelius Grunwald,^{1,*} Gudrun Hiller,^{1,2,†} Kevin Kröninger,^{1,‡} and Lara Nollen^{1,§} ^{1}TU Dortmund University, Department of Physics,

- + updated top-quark measurements
- + include Drell-Yan data
- + impose MFV flavor pattern to couple different sectors

19.02.24 | Cornelius Grunwald

Combining different energy scales & EFT formalisms

19.02.24 | Cornelius Grunwald

MFV Flavor Structure

- impose Minimal Flavor Violation (MFV) to couple different sectors
- MFV requires spurion expansion with Yukawa matrices:

$$\bar{u}_R u_R :\sim b_1 \mathbb{1} + b_2 Y_u^{\dagger} Y_u + \dots$$
right-handed up-type quarks

rotation into mass basis & keeping only y_t imposes correlations between sectors:

$$C \bar{q}_L q_L \supset \begin{bmatrix} \bar{u}_L \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_1 & 0 \\ 0 & 0 & a_1 + a_2 y_t^2 \end{pmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 |V_{td}|^2 y_t^2 & a_2 V_{td}^* V_{ts} y_t^2 & a_2 V_{td}^* V_{tb} y_t^2 \\ a_2 V_{ts}^* V_{td} y_t^2 & a_1 + a_2 |V_{ts}|^2 y_t^2 & a_1 + a_2 |V_{ts}|^2 y_t^2 \\ a_2 V_{tb}^* V_{td} y_t^2 & a_2 V_{tb}^* V_{ts} y_t^2 \end{bmatrix} d_L \end{bmatrix} \\ \frac{t\bar{t}}{t} \qquad \text{Drell-Yan} \qquad b \to s$$

• re-parametrization:

$$\tilde{C}_{q\bar{q}} = \frac{v^2}{\Lambda^2} a_1 \qquad \qquad \gamma_a = \sum_{n\geq 1} y_t^{2n} \, a_{2n}/a_1 \qquad \begin{array}{l} \text{``ratio of higher-order corrections} \\ \text{to leading terms''} \end{array}$$

19.02.24 | Cornelius Grunwald

14 Wilson coefficients:

14 Wilson coefficients:

• 7 semileptonic four-fermion operators

14 Wilson coefficients:

- 7 semileptonic four-fermion operators
- 4 penguin operators

14 Wilson coefficients:

- 7 semileptonic four-fermion operators
- 4 penguin operators
- 3 up-type dipole operators

14 Wilson coefficients:

- 7 semileptonic four-fermion operators
- 4 penguin operators
- 3 up-type dipole operators

2 ratios from MFV expansion:

- $\circ \gamma_a$ for left-handed quark doublets
- $\circ \gamma_{h}$ for right-handed up-quark singlets

19.02.24 | Cornelius Grunwald

Observables & Measurements

$$\begin{array}{c|c} & \text{Top} & \text{Drell-Yan} \\ \hline \sigma_{t\bar{t}} \ (\text{diff.}) & \sigma_{t\bar{t}Z} \ (\text{diff.}) & \sigma_{t\bar{t}\gamma} \ (\text{diff.}) & \Gamma_t \\ \sigma_{t\bar{t}H} \ (\text{incl.}) & \sigma_{t\bar{t}W} \ (\text{incl.}) & f_0 & f_L \\ \hline & \mu^+\mu^- & \mu\nu \\ & \tau^+\tau^- & \tau\nu \\ \end{array}$$

$$Z \text{ decays} \begin{array}{c} R_b & A^b_{FB} & R_c & A^c_{FB} \\ \hline & \pi^+\tau^- & \tau\nu \\ \hline & \pi^+\tau^- & \tau\nu \\ \hline & B_{\bar{B}\to X_s\gamma} & \mathcal{B}_{B_s\to\mu^+\mu^-} & \mathcal{B}_{\bar{B}\to X_sl^+l^-} & F_{LB^0\to K^*\mu^+\mu^-} \\ P^{(\prime)}_{iB^0\to K^*\mu^+\mu^-} & \mathcal{B}_{B^0/^+\to K^{0/+}\mu^+\mu^-} & \mathcal{B}_{B^0/^+\to K^{*0/+}\gamma} \\ & \mathcal{B}_{B^+\to K^{+*}\mu^+\mu^-} & S_{iB_s\to\phi\mu^+\mu^-} & \mathcal{B}_{A_b\to A\mu^+\mu^-} & \Delta M_{sB_s/\bar{B}_s} \end{array}$$

Results of the combined fit

19.02.24 | Cornelius Grunwald

Constraints on the MFV parameters

 $\gamma_a = \sum_{n \geq 1} y_t^{2n} \, a_{2n} / a_1$ left-handed quarks 0.3 $d^{(\lambda_a)}$ 0.1 0.0 $\stackrel{\mathbf{0}}{\gamma}_a$ -5 5 10

- posterior of γ_a peaks at -1.2 & 1.9
- expected: within [-1, 1] & centered around 0
- fit favors large higher-order corrections in the MFV expansion

Where is this pattern in γ_a coming from?

- $b \rightarrow s$ sector directly proportional to higher-order MFV corrections: very sensitive on γ_a
- $\gamma_a = 0$ would not allow for NP in this sector, which is contradicting the measurements

 \blacksquare B anomalies seem to be origin of the shape of γ_a

Impact of $b \rightarrow s \nu \nu$ transitions

• $b \rightarrow s$ transitions only probe linear combinations of Wilson coefficients:

$$\begin{split} b &\to s \ell^+ \ell^- \qquad \tilde{C}^{(+)}{}_{lq} = \tilde{C}^{(1)}_{lq} + \tilde{C}^{(3)}_{lq} \\ b &\to s \nu \bar{\nu} \qquad \tilde{C}^{(-)}{}_{lq} = \tilde{C}^{(1)}_{lq} - \tilde{C}^{(3)}_{lq} \end{split}$$

- only upper bounds on $b \rightarrow s \nu \nu$ branching ratios available
- hypothetical BELLE II measurements: (SM value + expected uncertainties)

$$\begin{split} B(B^0 \to K^{*0} \nu \bar{\nu})_{\rm BM \; SM} &= (9.5 \pm 2.5) \cdot 10^{-6} \\ B(B^+ \to K^+ \nu \bar{\nu})_{\rm BM \; SM} &= (4.4 \pm 1.3) \cdot 10^{-6} \end{split}$$

Impact of $b \rightarrow s \nu \nu$ transitions

• $b \rightarrow s$ transitions only probe linear combinations of Wilson coefficients:

$$b \rightarrow s \ell^+ \ell^- \qquad \tilde{C}^{(+)}_{lq} = \tilde{C}^{(1)}_{lq} + \tilde{C}^{(3)}_{lq}$$

$$b \rightarrow s \nu \bar{\nu} \qquad \qquad \tilde{C}^{(-)}{}_{lq} = \tilde{C}^{(1)}_{lq} - \tilde{C}^{(3)}_{lq}$$

- only upper bounds on $b \rightarrow s \nu \nu$ branching ratios available
- hypothetical BELLE II measurements: (SM value + expected uncertainties)

$$B(B^0 \to K^{*0} \nu \bar{\nu})_{\text{BM SM}} = (9.5 \pm 2.5) \cdot 10^{-6}$$
$$B(B^+ \to K^+ \nu \bar{\nu})_{\text{BM SM}} = (4.4 \pm 1.3) \cdot 10^{-6}$$

90% credible intervals

Impact of $b \rightarrow s \nu \nu$ transitions

• recent evidence (3.5 σ) on $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays by BELLE II (2311.14647) 90% credible intervals

Prediction of $B \rightarrow K \nu \nu$ branching ratios

- idea: use posterior distribution to predict new observables not included in the fit
- here: branching ratios of $B^0 \rightarrow K^{*0} \nu \nu \& B^+ \rightarrow K^+ \nu \nu$
- as expected: in agreement with SM & in reach of BELLE II

19.02.24 | Cornelius Grunwald

- **SMEFT** is a **powerful tool** to **search** for **BSM** physics at current experiments
- probing **many operators** at the same time requires **global fits** combining measurements from **different sectors**

- SMEFT is a powerful tool to search for BSM physics at current experiments
- probing **many operators** at the same time requires **global fits** combining measurements from **different sectors**
- our analysis exploited synergies of top-quark, B, Z, and Drell-Yan data
- constrained 14 Wilson coefficients & 2 MFV parameters

- SMEFT is a powerful tool to search for BSM physics at current experiments
- probing **many operators** at the same time requires **global fits** combining measurements from **different sectors**
- our analysis exploited synergies of top-quark, B, Z, and Drell-Yan data
- constrained 14 Wilson coefficients & 2 MFV parameters
- **B** anomalies lead to unexpected pattern of MFV expansion

0.5

0.0

- SMEFT is a powerful tool to search for BSM physics at current experiments
- probing many operators at the same time requires global fits combining measurements from different sectors
- our analysis exploited synergies of top-quark, B, Z, and Drell-Yan data
- constrained 14 Wilson coefficients & 2 MFV parameters
- B anomalies lead to unexpected pattern in MFV expansion
- **dineutrino branching ratios** can be crucial & **predicted** to be around the **SM**, within the reach of **Belle II**

19.02.24 | Cornelius Grunwald

Ĉuw

- SMEFT is a powerful tool to search for BSM physics at current experiments
- probing many operators at the same time requires global fits combining measurements from different sectors
- our analysis exploited synergies of top-quark, B, Z, and Drell-Yan data
- constrained 14 Wilson coefficients & 2 MFV parameters
- **B anomalies** lead to **unexpected pattern** in MFV expansion
- dineutrino branching ratios can be crucial & predicted to be around the SM, within the reach of Belle II

19.02.24 | Cornelius Grunwald

arXiv: 2304.12837

Thank you for your attention!

Synergies from Beauty, Top, Z and Drell-Yan Measurements in SMEFT

16

Backup Slides

19.02.24 | Cornelius Grunwald

Dimension-Six Operators in Warsaw Basis

$$\begin{split} O_{uG} &= \left(\bar{q}_L \sigma^{\mu\nu} T^A u_R\right) \tilde{\varphi} G^A_{\mu\nu} \,, \\ O_{uB} &= \left(\bar{q}_L \sigma^{\mu\nu} u_R\right) \tilde{\varphi} B_{\mu\nu} \,, \\ O^{(1)}_{lq} &= \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{q}_L \gamma^\mu q_L\right) \,, \\ O_{eu} &= \left(\bar{e}_R \gamma_\mu e_R\right) \left(\bar{u}_R \gamma^\mu u_R\right) \,, \\ O_{lu} &= \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{u}_R \gamma^\mu u_R\right) \,, \\ O^{(1)}_{\varphi q} &= \left(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi\right) \left(\bar{q}_L \gamma^\mu q_L\right) \,, \\ O_{\varphi u} &= \left(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi\right) \left(\bar{u}_R \gamma^\mu u_R\right) \,, \end{split}$$

$$\begin{split} O_{uW} &= \left(\bar{q}_L \sigma^{\mu\nu} u_R\right) \tau^I \tilde{\varphi} W^I_{\mu\nu}, \\ O_{qe} &= \left(\bar{q}_L \gamma_\mu q_L\right) \left(\bar{e}_R \gamma^\mu e_R\right) \,, \\ O_{lq}^{(3)} &= \left(\bar{l}_L \gamma_\mu \tau^I l_L\right) \left(\bar{q}_L \gamma^\mu \tau^I q_L\right) \,, \\ O_{ed} &= \left(\bar{e}_R \gamma_\mu e_R\right) \left(\bar{d}_R \gamma^\mu d_R\right) \,, \\ O_{ld} &= \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{d}_R \gamma^\mu d_R\right) \,, \\ O_{\varphi q}^{(3)} &= \left(\varphi^{\dagger} i \widetilde{D}^I_{\mu} \varphi\right) \left(\bar{q}_L \tau^I \gamma^\mu q_L\right) \,, \\ O_{\varphi d} &= \left(\varphi^{\dagger} i \widetilde{D}_\mu \varphi\right) \left(\bar{d}_R \gamma^\mu d_R\right) \,, \end{split}$$

Combining different energy scales & EFT formalisms

19.02.24 | Cornelius Grunwald

Combining different energy scales & EFT formalisms

19.02.24 | Cornelius Grunwald

Weak Effective Theory - WET

Effective Lagrangian for $b \rightarrow sll$

$$\mathcal{L}_{\text{WET}}^{bs} = \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

$$\begin{split} Q_{7} &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} b_{R}) F_{\mu\nu} & Q_{8} &= \frac{g_{s}}{16\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} T^{a} b_{R}) G_{\mu\nu}^{a} \\ Q_{9} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \ell) & Q_{10} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \\ Q_{L} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\nu} \gamma^{\mu} (1 - \gamma_{5}) \nu) \end{split}$$

Tree-Level Matching

$$\begin{split} \Delta C_9^{\text{tree}} &= \frac{\pi}{\alpha} \, \gamma_a \, \left[\tilde{C}_{lq}^+ + \tilde{C}_{qe} + \left(-1 + 4 \sin^2 \theta_w \right) \tilde{C}_{\varphi q}^+ \right] \\ &= \gamma_a \cdot \left(430.511 \, \left(\tilde{C}_{qe} + \tilde{C}_{lq}^+ \right) - 45.858 \tilde{C}_{\varphi q}^+ \right) \,, \end{split}$$

$$\begin{split} \Delta C_{10}^{\rm tree} &= \frac{\pi}{\alpha} \, \gamma_a \, \left[-\tilde{C}^+_{lq} + \tilde{C}_{qe} + \tilde{C}^+_{\varphi q} \right] \\ &= \gamma_a \cdot 430.511 \left(\tilde{C}^+_{\varphi q} + \tilde{C}_{qe} - \tilde{C}^+_{lq} \right) \,, \end{split}$$

$$\begin{split} \Delta C_L^{\text{tree}} &= \frac{\pi}{\alpha} \, \gamma_a \, \left[\tilde{C}_{lq}^- + \tilde{C}_{\varphi q}^+ \right] \\ &= \gamma_a \cdot 430.511 \, \left(\tilde{C}_{\varphi q}^+ + \tilde{C}_{lq}^- \right) \end{split}$$

19.02.24 | Cornelius Grunwald

One-Loop Matching

$$\begin{split} C_7 &= -2.351\,\tilde{C}_{uB} + 0.093\,\tilde{C}_{uW} + \gamma_a \cdot \left(-0.095\,\tilde{C}_{\varphi q}^+ + 1.278\,\tilde{C}_{\varphi q}^{(3)}\right) + (1+\gamma_a) \cdot \left(-0.388\,\tilde{C}_{\varphi q}^{(3)}\right) \\ C_8 &= -0.664\,\tilde{C}_{uG} + 0.271\,\tilde{C}_{uW} + \gamma_a \cdot \left(0.284\,\tilde{C}_{\varphi q}^+ + 0.667\,\tilde{C}_{\varphi q}^{(3)}\right) + (1+\gamma_a) \cdot \left(-0.194\,\tilde{C}_{\varphi q}^{(3)}\right) \\ C_9 &= 2.506\,\tilde{C}_{uB} + 2.137\,\tilde{C}_{uW} + (1+\gamma_b)\left(0.213\,\tilde{C}_{\varphi u} + 2.003\left(-\tilde{C}_{lu} - \tilde{C}_{eu}\right)\right) \\ &+ (1+\gamma_a) \cdot \left(-0.213\,\tilde{C}_{\varphi q}^{(1)} + 4.374\,\tilde{C}_{\varphi q}^{(3)} + 2.003\left(\tilde{C}_{qe} + \tilde{C}_{lq}^{(1)}\right) - 3.163\,\tilde{C}_{lq}^{(3)}\right) \\ C_{10} &= -7.515\,\tilde{C}_{uW} + (1+\gamma_b) \cdot \left(2.003\left(-\tilde{C}_{\varphi u} - \tilde{C}_{eu} + \tilde{C}_{lu}\right)\right) \\ &+ (1+\gamma_a) \cdot \left(2.003\left(\tilde{C}_{\varphi q}^{(1)} + \tilde{C}_{qe} - \tilde{C}_{lq}^{(1)}\right) - 17.884\,\tilde{C}_{\varphi q}^{(3)} + 3.163\,\tilde{C}_{lq}^{(3)}\right) \\ C_L &= 12.889\,\tilde{C}_{uW} + (1+\gamma_a) \cdot \left(2.003\left(\tilde{C}_{\varphi q}^{(1)} + \tilde{C}_{lq}^{(1)}\right) - 22.830\tilde{C}_{\varphi q}^{(3)} - 16.275\tilde{C}_{lq}^{(3)}\right) \\ &+ (1+\gamma_b) \cdot 2.003\left(-\tilde{C}_{\varphi u} - \tilde{C}_{lu}\right) \\ \end{split}$$

19.02.24 | Cornelius Grunwald

MFV in SMEFT

• Expand the quark bilinears

$$\begin{split} \bar{q}_L q_L &:\sim a_1 \mathbbm{1} + a_2 Y_u Y_u^{\dagger} + a_3 Y_d Y_d^{\dagger} + \dots \quad \bar{u}_R u_R :\sim b_1 \mathbbm{1} + b_2 Y_u^{\dagger} Y_u + \dots \quad \bar{d}_R d_R :\sim e_1 \mathbbm{1} + e_2 Y_d^{\dagger} Y_d + \dots \\ \bar{q}_L u_R &:\sim (c_1 \mathbbm{1} + c_2 Y_u Y_u^{\dagger} + c_3 Y_d Y_d^{\dagger} + \dots) Y_u \qquad \bar{q}_L d_R :\sim (d_1 \mathbbm{1} + d_2 Y_u Y_u^{\dagger} + d_3 Y_d Y_d^{\dagger} + \dots) Y_d \end{split}$$

• Rotating to the mass basis and retaining only y_t yields:

$$C \bar{q}_L q_L \supset \begin{bmatrix} \bar{u}_L \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_1 & 0 \\ 0 & 0 & a_1 + a_2 y_t^2 \end{pmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 |V_{td}|^2 y_t^2 & a_2 V_{td}^* V_{ts} y_t^2 & a_2 V_{td}^* V_{tb} y_t^2 \\ a_2 V_{ts}^* V_{td} y_t^2 & a_1 + a_2 |V_{ts}|^2 y_t^2 & a_1 + a_2 |V_{ts}|^2 y_t^2 \\ a_2 V_{tb}^* V_{td} y_t^2 & a_2 V_{tb}^* V_{ts} y_t^2 \end{bmatrix} d_L \end{bmatrix} \\ \frac{t\bar{t}}{t} \qquad \text{Drell-Yan} \qquad b \to s$$

- Imposes correlations among flavor entries and allows for down-type FCNCs
- $Y_d \sim 0 \rightarrow \text{No up-type FCNCs and no chirality flipping down-type operators}$
- $Y_l \sim 0 \rightarrow$ Lepton-flavor universality

See also e.g. Bruggisser et al. [arXiv:2212.02532] or Greljo et al. [arXiv:2212.10497] for MFV in SMEFT

MFV Flavor Structure

$$C \,\bar{q}_L q_L \supset \left[\bar{u}_L \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_1 & 0 \\ 0 & 0 & a_1 + a_2 \ y_t^2 \end{pmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{td}|^2 \ y_t^2 & a_2 \ V_{td}^* V_{ts} \ y_t^2 & a_2 \ V_{td}^* V_{ts} \ y_t^2 \\ a_2 \ V_{ts}^* V_{td} \ y_t^2 & a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{td}|^2 \ y_t^2 & a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{td}|^2 \ y_t^2 & a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{td}|^2 \ y_t^2 & a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ a_2 \ V_{tb}^* V_{ts} \ y_t^2 \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{ts}|^2 \ y_t^2 \\ u_L \ y_t^2 \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{tb}|^2 \ y_t^2 \ y_t^2 \ y_t^2 \ y_t^2 \ y_t^2 \end{bmatrix} u_L \end{bmatrix} u_L + \bar{d}_L \begin{bmatrix} a_1 + a_2 \ |V_{tb}|^2 \ y_t^2 \ y_$$

• re-parametrization:

$$\tilde{C}_{q\bar{q}} = \frac{v^2}{\Lambda^2} a_1 \qquad \qquad \gamma_a = \sum_{n \ge 1} y_t^{2n} a_{2n}/a_1$$

"ratio of higher-order corrections to leading terms"

• sensitivities to γ_a :

$$\begin{aligned} & \left[u_L^i \bar{u}_L^i \sim \tilde{C}_i \right] & \left[d_L^i \bar{d}_L^i \sim \tilde{C}_i (1 + \gamma_A |V_{ti}|^2) \right] & \left[\bar{u}_L^i d_L^j \sim \tilde{C}_i V_{ij} \right] \\ & t_L \bar{t}_L \sim \tilde{C}_i (1 + \gamma_a) & \left[b_L \bar{s}_L \sim \tilde{C}_i \gamma_a V_{ts}^* V_{tb} \right] & \left[\bar{t}_L d_L^j \sim \tilde{C}_i (1 + \gamma_A) V_{tj} \right] \end{aligned}$$

MC Simulation Chain

$$\mathcal{M} = \mathcal{M}^{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i C_i \mathcal{M}_i^{\mathsf{BSM}} \xrightarrow{\sigma \propto |\mathcal{M}|^2} \sigma = \sigma^{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{\mathsf{int}} + \frac{1}{\Lambda^4} \sum_{i \leq j} C_i C_j \sigma_{ij}^{\mathsf{BSM}}$$

Top-Quark & Drell-Yan Observables

Top-Quark

Process Observable SMEFT operators Experiment

$t \overline{t}$	$rac{\mathrm{d}\sigma}{\mathrm{dm}(tar{t})}$	$ ilde{C}_{uG}$	CMS
$t\bar{t}Z$	$rac{\mathrm{d}\sigma}{\mathrm{dp}_{\mathrm{T}}(Z)}$	$\tilde{C}_{uG} \; \tilde{C}_{uZ} \; \tilde{C}_{\varphi u} \; \tilde{C}^{\varphi q}$	ATLAS
$t \bar{t} \gamma$	$rac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{p}_{\mathrm{T}}(\gamma)}$	$ ilde{C}_{uG} ilde{C}_{u\gamma}$	ATLAS
$t\bar{t}W$	$\sigma_{tar{t}W}$	$ ilde{C}_{uG}$	ATLAS
$t\bar{t}H$	$\sigma_{t\bar{t}H} \times B_{\gamma\gamma}$	$ ilde{C}_{uG}$	ATLAS
$x \to Wb$	f_0, f_L	$ ilde{C}_{uW}$	ATLAS
$z \to Wb$	Γ_t	$ ilde{C}_{uW} \ ilde{C}^3_{arphi q}$	ATLAS

Drell-Yan

Process	Experiment			
$pp \rightarrow e^+e^-$	CMS			
$pp \to \mu^+ \mu^-$	\mathbf{CMS}			
$pp \to \tau^+ \tau^-$	ATLAS			
$pp \to e\nu$	ATLAS			
$pp \to \mu\nu$	ATLAS			
$pp \to \tau \nu$	ATLAS			

B Observables & Sensitivities

Observables

Sensitivities

Process	Observable	$q^2 \; [\text{GeV}^2]$	Collaboration	Process	WET	Tree-Level	Loop-Level
$\bar{B} \to X_s \gamma$	${\cal B}_{E_{\gamma}>1.6~{ m GeV}}$		HFLAV	$b \rightarrow s \gamma$	$C_7, \{C_8\}$		$\tilde{C}_{uB}, \tilde{C}_{uW}, \{\tilde{C}_{uG}\}, \tilde{C}^{(1)}_{\varphi q}, \tilde{C}^{(3)}_{\varphi q}$
$B^0 \to K^* \gamma$	${\mathcal B}$		HFLAV				$\tilde{C}_{\rm TFR}$ $\tilde{C}_{\rm TFR}$ $\{\tilde{C}_{\rm TFC}\}$ $\tilde{C}_{\rm TFC}$ $\tilde{C}_{\rm TFC}^{(1)}$ $\tilde{C}_{\rm TFC}^{(3)}$
$B^+ \to K^{*+} \gamma$	\mathcal{B}		HFLAV	$b \to s \ell^+ \ell^-$	$C_7, \{C_8\}, C_9, C_{10}$	$\tilde{C}^+_{\varphi q}, \tilde{C}^+_{lq}, \tilde{C}_{qe}$	$\tilde{C}_{uB}, \tilde{C}_{uW}, \tilde{C}_{uG}, \tilde{C}_{\varphi u}, \tilde{C}_{\varphi q}, \tilde{C}_{\varphi q}$
$\bar{\mathcal{P}} \rightarrow \mathbf{V} \ \ell + \ell -$	${\mathcal B}$	$\begin{bmatrix} 1 & c \end{bmatrix}$	BaBar				$\mathcal{O}_{lu}, \mathcal{O}_{eu}, \mathcal{O}_{qe}, \mathcal{O}_{lq}, \mathcal{O}_{lq}$
$D \rightarrow A_{S} t \cdot t$	$A_{ m FB}$	[1,0]	Belle	$b \to s \nu \bar{\nu}$	C_L	$\tilde{C}^+_{\iota\sigma\sigma}, \tilde{C}^{\iota\sigma}$	$C_{uW}, C_{\varphi u}, C_{\varphi q}^{(1)}, C_{\varphi q}^{(3)},$
$B_s \to \mu^+ \mu^-$	${\mathcal B}$		CMS			$\varphi q \neq i q$	$ ilde{C}_{lu}, ilde{C}^{(1)}_{lq}, ilde{C}^{(3)}_{lq}$
$B^0 \to K^* \mu^+ \mu^-$	$F_L, P_1, P_2, P_3, P_4, P_5, P_6, P_8'$	[1.1, 6]	LHCb	$B_s - \bar{B}_s$ mixing	$C_{V,LL}^{\min}$		$ ilde{C}_{uW}, ilde{C}^{(1)}_{arphi q}, ilde{C}^{(3)}_{arphi q}$
$B^0 \to K \mu^+ \mu^-$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2$	[1,6]	LHCb				
$B^+ \to K^+ \mu^+ \mu^-$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2$	[1,6]	LHCb				
$B^+ \to K^{+*} \mu^+ \mu^-$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2$	[1,6]	LHCb				
$B_s \to \phi \mu^+ \mu^-$	F_L, S_3, S_4, S_7	[1.1, 6]	LHCb				
$\Lambda_b \to \Lambda \mu^+ \mu^-$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2$	[15, 20]	LHCb				
$B_s - \bar{B}_s$ mixing	Δm_s		HFLAV				

$B \rightarrow K \nu \nu$ benchmark scenarios

• Experimental upper limits [Phys. Rev. D 96, 091101 (2017)]

 $B(B^0 \to K^{*0} \nu \bar{\nu})_{\rm exp} < 1.8 \cdot 10^{-5} \qquad B(B^+ \to K^+ \nu \bar{\nu})_{\rm exp} < 1.6 \cdot 10^{-5}$

• SM prediction [arXiv:1810.08132]

 $B(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.53 \pm 0.95) \cdot 10^{-6} \quad B(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (4.39 \pm 0.60) \cdot 10^{-6}$

Benchmark measurements

$$\begin{split} B(B^0 \to K^{*0} \nu \bar{\nu})_{\mathsf{BM} \ \mathsf{SM}} &= (9.5 \pm 2.5) \cdot 10^{-6} \quad B(B^+ \to K^+ \nu \bar{\nu})_{\mathsf{BM} \ \mathsf{SM}} = (4.4 \pm 1.3) \cdot 10^{-6} \\ B(B^0 \to K^{*0} \nu \bar{\nu})_{\mathsf{BM}+2\sigma} &= (14.5 \pm 2.5) \cdot 10^{-6} \quad B(B^+ \to K^+ \nu \bar{\nu})_{\mathsf{BM}+2\sigma} = (7.0 \pm 1.3) \cdot 10^{-6} \\ B(B^0 \to K^{*0} \nu \bar{\nu})_{\mathsf{BM}-2\sigma} &= (4.6 \pm 2.5) \cdot 10^{-6} \quad B(B^+ \to K^+ \nu \bar{\nu})_{\mathsf{BM}-2\sigma} = (1.8 \pm 1.3) \cdot 10^{-6} \end{split}$$

Top-quark Fit

Top-quark Fit

Drell-Yan Fits

Impact of Top & Z on γ_a

 \implies No large impact of top and Z measurements on γ_a

19.02.24 | Cornelius Grunwald

Constraints on the MFV parameters

- basically no constraints on γ_h
- expected as observables not very sensitive to $\gamma_{\rm b}$

- posterior of γ_a peaks at -1.2 & 1.9
- expected: within [-1, 1] & centered around 0
- fit favors large higher-order corrections in the MFV expansion