# STAYING ON TOP OF SMEFT-LIKELIHOOD ANALYSES

A global SMEFT analysis in the top sector including public likelihoods

Nikita Schmal

Collaborators: Nina Elmer, Maeve Madigan, Tilman Plehn

Based on arXiv:2312.12502 [hep-ph]

LHF EFT WG meeting

#### Outline

- ➤ Intro: Standard Model Effective Field Theory
- ➤ Part I: Statistical analysis using SFitter
- ➤ Part II: SFitter analyses with public likelihoods
- ➤ Part III: The Global SMEFT analysis
- > Conclusion

# Standard Model Effective Field Theory

#### **SMEFT**

> Well established model agnostic approach in searches for BSM physics

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{d=5}^{n} \frac{C_i^{(d)}}{\Lambda^{d-4}} O_i^{(d)}$$

➤ Up to quadratic order SMEFT contributions included i.e.

$$\sigma = \sigma_{SM} + \frac{c_6}{\Lambda^2}\sigma_6 + \frac{c_6^2}{\Lambda^4}\sigma_{6\times 6} + \frac{c_8}{\Lambda^4}\sigma_8 + \mathcal{O}(\Lambda^5)$$

# Standard Model Effective Field Theory

#### **SMEFT**

> Well established model agnostic approach in searches for BSM physics

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{d=5}^{n} \frac{C_i^{(d)}}{\Lambda^{d-4}} O_i^{(d)}$$

➤ Up to quadratic order SMEFT contributions included i.e.

$$\sigma = \sigma_{SM} + \frac{c_6}{\Lambda^2}\sigma_6 + \frac{c_6^2}{\Lambda^4}\sigma_{6\times 6} + \frac{c_6}{\Lambda^4}\sigma_8 + \mathcal{O}(\Lambda^5)$$

> Restrict ourselves to operators of dimension 6

# Standard Model Effective Field Theory

## Updated dataset

➤ Update of <u>arXiv:1910.03606</u> [hep-ph] (SFitter global Top fit, 2019)

- ➤ Impose  $U(2)_q \times U(2)_u \times U(2)_d$  symmetry
  - ➤ Consider a total of 22 Operators
- $\blacktriangleright$  Includes  $t\bar{t}$ ,  $t\bar{t}Z$ ,  $t\bar{t}W$  and single top data
  - ➤ Total of 122 datapoints

arXiv:2312.12502 [hep-ph]

| Wilson coeff                                                                                                                                                                                                                                 | t t̄                                                            | single t                                   | tW             | tΖ                                         | t-decay                                    | tτ̄Z                                       | t <del>T</del> W                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|----------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| $\overline{C^{1,8}_{Qq}}$                                                                                                                                                                                                                    | $\Lambda^{-2}$                                                  | _                                          | _              | _                                          | _                                          | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             |
| $C_{Qq}^{3,\overline{8}}$                                                                                                                                                                                                                    | $\Lambda^{-2}$                                                  | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | _              | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ |                                            | $\Lambda^{-2}$                             |
| $C_{tu_1}^{8^1}, C_{td}^{8}$ Eq.(3                                                                                                                                                                                                           | $\Lambda^{-2}$                                                  | _                                          | _              | _                                          | _                                          | $\Lambda^{-2}$                             | _                                          |
| $C_{Oa}^{1,1}$                                                                                                                                                                                                                               | $\int \Lambda^{-4} \left[ \Lambda^{-2} \right]$                 | _                                          | _              | _                                          | _                                          | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ |
| $C_{Oa}^{3,1}$                                                                                                                                                                                                                               | $\Lambda^{-4} [\Lambda^{-2}]$                                   | $\Lambda^{-2}$                             | _              | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ |
| $C_{tu}^{1}, C_{td}^{1}$                                                                                                                                                                                                                     | $\Lambda^{-4} \left[\Lambda^{-2}\right]$                        |                                            | _              | -                                          | -                                          | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | _                                          |
| $C_{Ou}^{8}, C_{Od}^{8}$                                                                                                                                                                                                                     | $\Lambda^{-2}$                                                  | _                                          | _              | _                                          | _                                          | $\Lambda^{-2}$                             | _                                          |
| $C_{tq}^{8}$ Eq.(4                                                                                                                                                                                                                           | $\Lambda^{-2}$                                                  | _                                          | _              | _                                          | _                                          | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             |
| $C_{Ou}^{1}, C_{Od}^{1}$                                                                                                                                                                                                                     | $^{\prime\prime} \mid \Lambda^{-4} \left[ \Lambda^{-2} \right]$ | _                                          | _              | _                                          | _                                          | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | _                                          |
| $C_{Qq}^{1,8}$ $C_{Qq}^{3,8}$ $C_{Qq}^{8}$ $C_{tu}^{8}$ , $C_{td}^{8}$ $C_{Qq}^{1,1}$ $C_{Qq}^{3,1}$ $C_{Qq}^{1}$ $C_{tu}^{1}$ , $C_{td}^{1}$ $C_{Qu}^{8}$ , $C_{Qd}^{8}$ $C_{tq}^{1}$ $C_{Qu}^{1}$ , $C_{Qd}^{1}$ $C_{tq}^{1}$ $C_{tq}^{1}$ | $\Lambda^{-4} \left[\Lambda^{-2}\right]$                        | _                                          | _              | _                                          | _                                          | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ | $\Lambda^{-4} \left[ \Lambda^{-2} \right]$ |
| $C_{\phi Q}^- \ C_{\phi Q}^3 \ C_{\phi t}$                                                                                                                                                                                                   | -                                                               | _                                          | _              | $\Lambda^{-2}$                             | _                                          | $\Lambda^{-2}$                             | _                                          |
| $C_{qQ}^{\phi O}$                                                                                                                                                                                                                            | _                                                               | $\Lambda^{-2}$                             | $\Lambda^{-2}$ | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             | _                                          |
| $C_{\phi t}^{\prime c}$                                                                                                                                                                                                                      | _                                                               | _                                          | _              | $\Lambda^{-2}$                             | _                                          | $\Lambda^{-2}$                             | _                                          |
| $C_{\phi tb}$ Eq.(                                                                                                                                                                                                                           | 5)   -                                                          | $\Lambda^{-4}$                             | $\Lambda^{-4}$ | $\Lambda^{-4}$                             | $\Lambda^{-4}$                             | _                                          | _                                          |
| $C_{tZ}$                                                                                                                                                                                                                                     | _                                                               | _                                          | _              | $\Lambda^{-2}$                             | _                                          | $\Lambda^{-2}$                             | _                                          |
| $C_{tW}$                                                                                                                                                                                                                                     | _                                                               | $\Lambda^{-2}$                             | $\Lambda^{-2}$ | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             | _                                          | _                                          |
| $C_{bW}$                                                                                                                                                                                                                                     | -<br>                                                           | $\Lambda^{-4}$                             | $\Lambda^{-4}$ | $\Lambda^{-4}$                             | $\Lambda^{-4}$                             | _<br>                                      | _<br>                                      |
| $C_{tG}$                                                                                                                                                                                                                                     | $\Lambda^{-2}$                                                  | $[\Lambda^{-2}]$                           | $\Lambda^{-2}$ |                                            | $[\Lambda^{-2}]$                           | $\Lambda^{-2}$                             | $\Lambda^{-2}$                             |

# PART

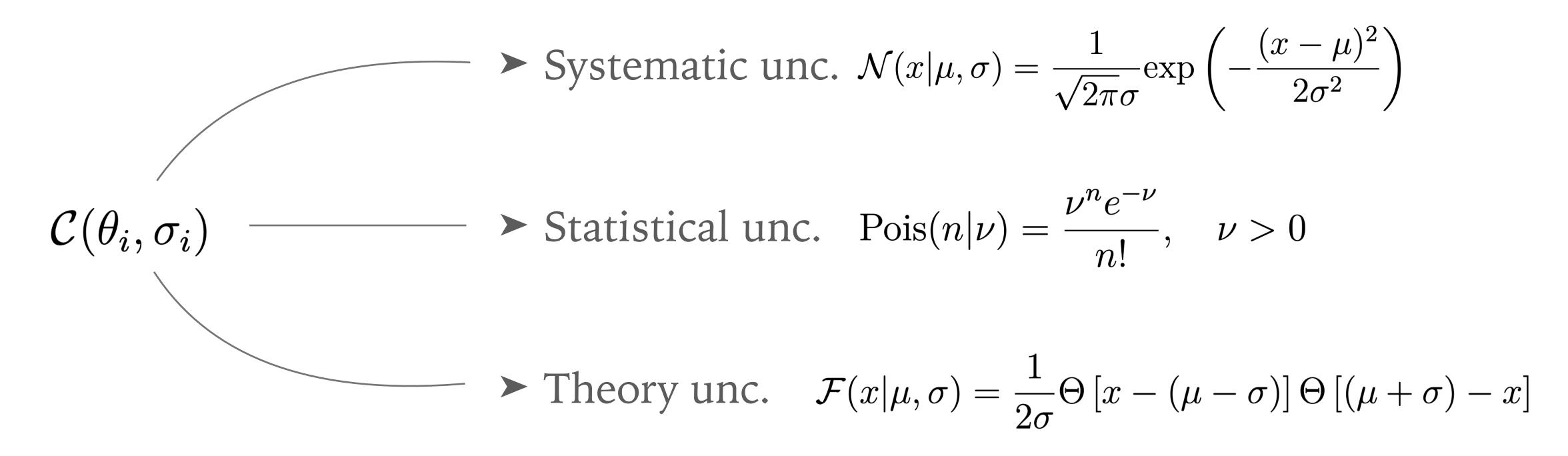
Statistical analysis using SFitter

#### What is our tool of choice?

#### **SFitter**

- ➤ Used for various global SMEFT analyses (Higgs, Di-Boson, EWPO, Top)
- ➤ Comprehensive treatment of uncertainties
- > Fully correlated systematic uncertainties within experiments
- > Allows for both profiling and marginalization methods
- ➤ Mapping of likelihood using **MCMC**

➤ Goal of this part: Explain what exactly all this means


#### The exclusive likelihood

➤ Likelihood for a single measurements modelled as

$$\mathcal{L}_{excl} = \text{Pois}(d|p(\alpha_n, \theta_i, b)) \text{Pois}(b_{CR}|b|k) \prod_{i} \mathcal{C}(\theta_i, \sigma_i)$$

- $\succ$  SMEFT contributions are incorporated into model parameters  $\alpha_n$
- $\blacktriangleright$  Uncertainties included via nuisance parameters (NP)  $\theta_i$
- ightharpoonup Constraint term  $\mathcal{C}(\theta_i, \sigma_i)$  depends on uncertainty considered

## Uncertainty constraints



- Choice of constraint is motivated by physical intuition
  - ➤ However: They are a choice and could technically be chosen differently

## Generalization to multiple measurements

> Global analyses study numerous different processes

$$\mathcal{L}_{\text{excl,full}} = \prod_{c} \text{Pois}(d_c|p_c) \text{Pois}(b_{CR_c}|b_c k_c) \prod_{i} \mathcal{C}(\theta_{i,c}, \sigma_{i,c})$$

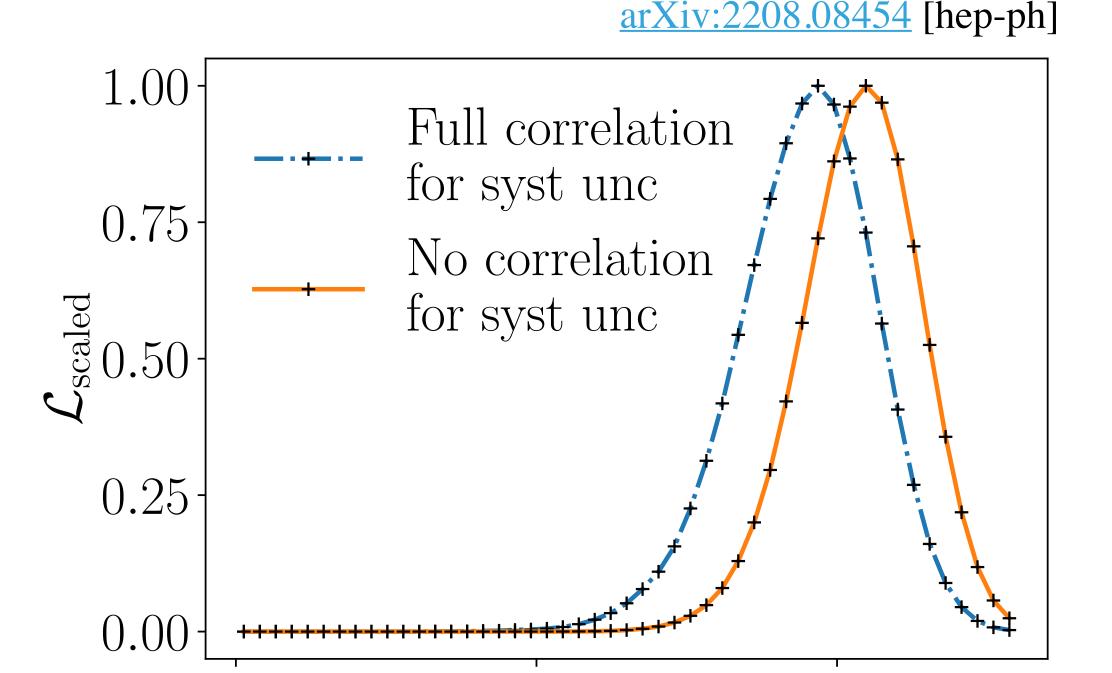
➤ Take into consideration correlations between these measurements

$$\mathcal{N}(\theta_{syst,i}|0,\sigma_i) \longrightarrow \mathcal{N}(\vec{\theta}_{syst,i}|\vec{0},\Sigma_i)$$

➤ Assumption: Systematics are fully correlated between measurements

## Systematic uncertainties

- Each category of systematic is fully correlated within CMS and ATLAS
- Luminosity correlated between both experiments


#### Systematic uncertainties

Beam
Background (Separate for each channel)
ETmis
Jets
Leptons
LightTagging
Luminosity
Pileup
Trigger
Tune
bTagging
partonShower
tTagging

tauTagging

## Systematic uncertainties

- ➤ Each category of systematic is fully correlated within CMS and ATLAS
- Luminosity correlated between both experiments
- Clear shift in the likelihoods due to correlations between systematics



#### Takeaway

- ➤ Uncertainty treatment essential to our SFitter analysis
  - > Implementation of theory, statistical and systematic uncertainties
  - > Furthermore: Correlated systematics of the same type

- Theory prediction and uncertainties computed ourselves
  - ➤ However: The systematics have to be provided by experiment
  - ➤ How is this data provided and how can we use it?

# PARTI

SFitter analyses using published likelihoods

#### Quick overview

➤ Likelihoods published in the HistFactory format

$$\mathcal{L}(n_{cb}, a_{\chi} | \eta, \chi) = \prod_{c \in \text{channels } b \in \text{bins}} \text{Pois}(n_{cb} | \nu_{cb}(\eta, \chi)) \prod_{\chi \in \vec{\chi}} \mathcal{C}_{\chi}(a_{\chi} | \chi)$$

► Provides effect of individual NPs via  $\nu_{cb} = \sum_{s \in \text{samples}} \left( \prod_{\kappa \in \vec{\kappa}} \kappa_{scb} \right) \left( \nu_{scb}^0 + \sum_{\Delta \in \vec{\Delta}} \Delta_{scb} \right)$ 

| Description                     | Modification                                                 | Constraint ${\cal C}$                                        |
|---------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Luminosity ('lumi')             | $\kappa_{sb} = \lambda$                                      | $\mathcal{N}(l=\lambda_0 \lambda,\sigma_{\lambda})$          |
| Normalization unc. ('normsys')  | $ \kappa_{sb} = g_p(\alpha   \kappa_{sb,\alpha=\pm 1}) $     | $\mathcal{N}(a=0 \alpha,\sigma=1)$                           |
| Correlated Shape ('histosys')   | $\Delta_{sb} = \hat{f}_p(\alpha   \Delta_{sb,\alpha=\pm 1})$ | $\mathcal{N}(a=0 \alpha,\sigma=1)$                           |
| MC Stat. ('staterror')          | $\kappa_{sb} = \gamma_b$                                     | $\prod_b \mathcal{N}(a_{\gamma_b} = 1   \gamma_b, \delta_b)$ |
| Uncorrelated Shape ('shapesys') | $\kappa_{sb} = \gamma_b$                                     | $\prod_b \text{Pois}(\sigma_b^{-2} \sigma_b^{-2}\gamma_b)$   |
| Normalization ('normfactor')    | $\kappa_{sb} = \mu_b$                                        |                                                              |

#### Quick overview

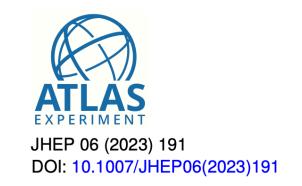
➤ Likelihoods published in the HistFactory format

$$\mathcal{L}(n_{cb}, a_{\chi} | \eta, \chi) = \prod_{c \in \text{channels } b \in \text{bins}} \text{Pois}(n_{cb} | \nu_{cb}(\eta, \chi)) \prod_{\chi \in \vec{\chi}} \mathcal{C}_{\chi}(a_{\chi} | \chi)$$

- There are many different nuisance parameters (hundreds)
- > Analysed using dedicated python libraries such as pyhf and cabinetry
  - ➤ Question: How to make use of this in SFitter analyses?



# Likelihoods published by ATLAS


<u>arXiv:2006.13076</u> [hep-ex]


EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)



CERN-EP-2020-096 DOI: 10.1016/j.physletb.2020.135797 10th November 2020 <u>arXiv:2103.12603</u> [hep-ex]

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)





Measurement of the  $t\bar{t}$  production cross-section in the lepton+jets channel at  $\sqrt{s} = 13$  TeV with the **ATLAS** experiment

arXiv:2209.08990 [hep-ex]

Measurement of single top-quark production in the s-channel in proton–proton collisions at  $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector

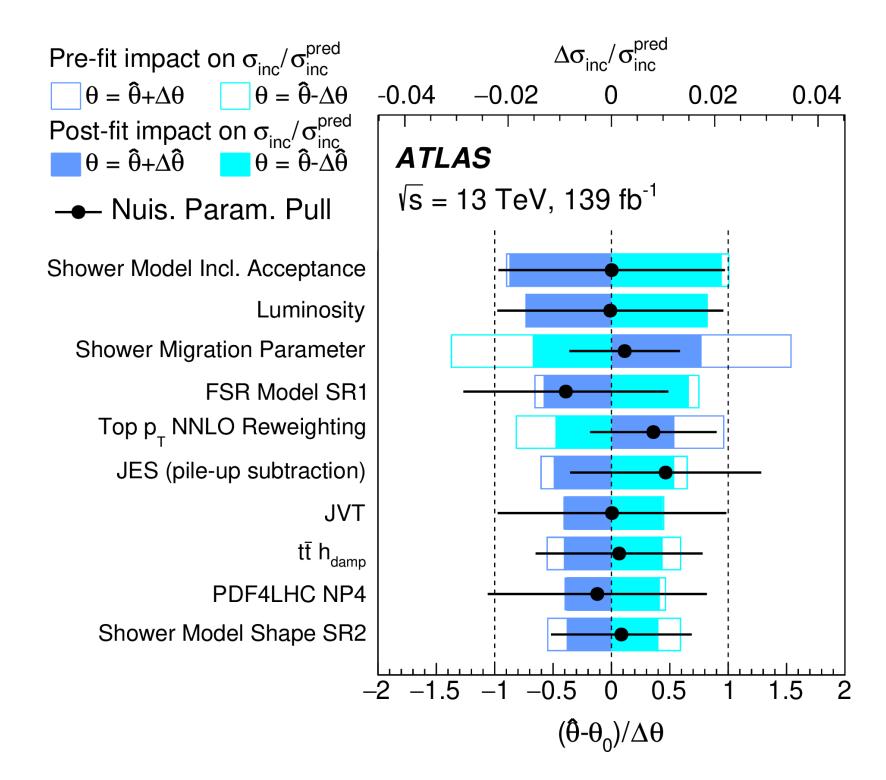
The ATLAS Collaboration

Eur. Phys. J. C (2021) 81:737 https://doi.org/10.1140/epjc/s10052-021-09439-4

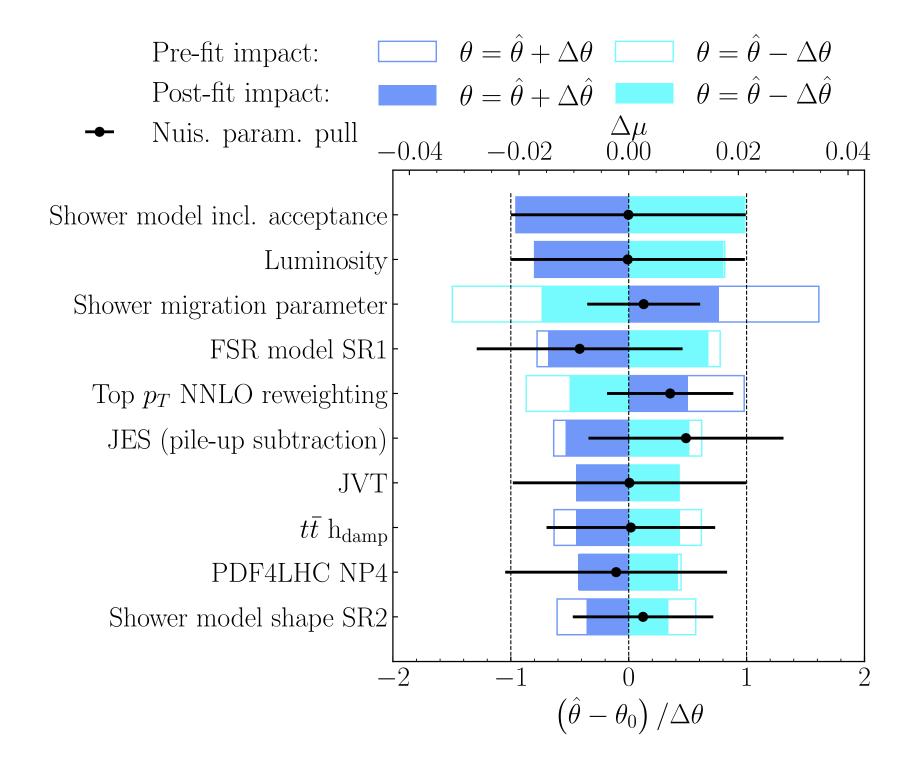
THE EUROPEAN PHYSICAL JOURNAL C

The ATLAS Collaboration

Regular Article - Experimental Physics


Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a Z boson at  $\sqrt{s} = 13$  TeV with the ATLAS detector

ATLAS Collaboration


CERN, 1211 Geneva 23, Switzerland

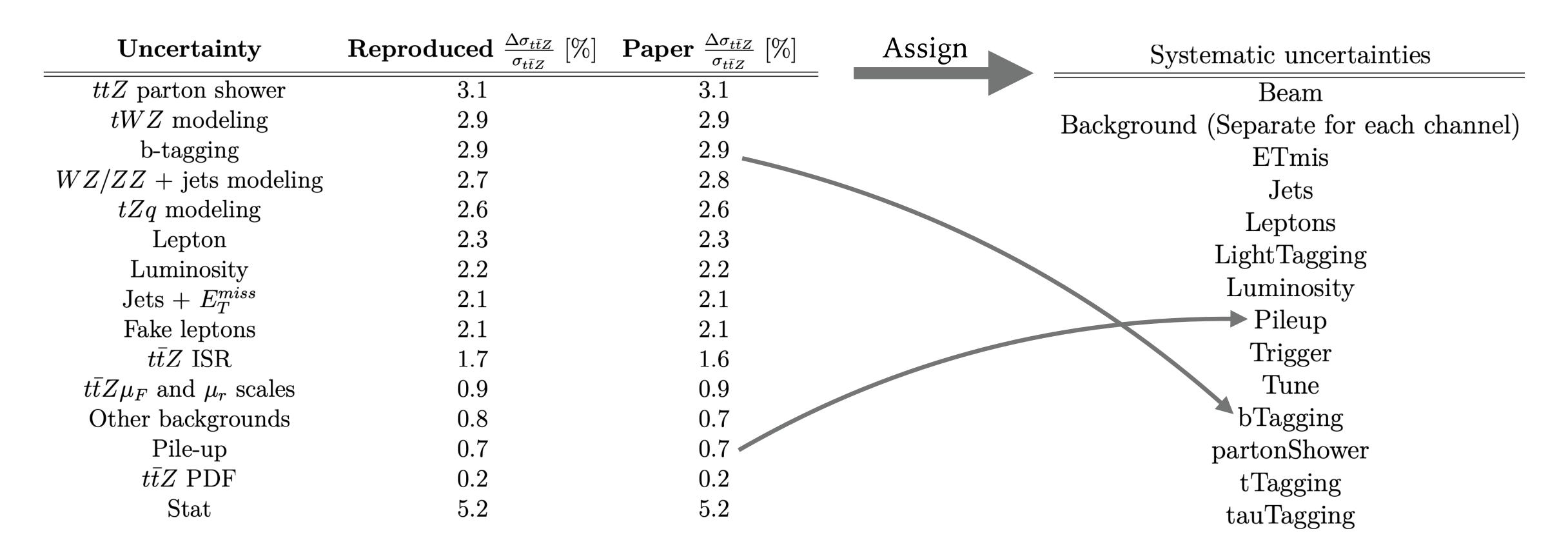
➤ Full likelihoods publicly available on HEPData

## Quick overview (Reproduction)



<u>arXiv:2006.13076</u> [hep-ex]






- ➤ Previously: Uncertainties taken as given in the paper
- ➤ Now: Uncertainties extracted from profiling fit via pyhf
  - Implemented into SFitter using the constraints terms  $C(\theta_i, \sigma_i)$
- ➤ Problem: Difficult to automate due to inconsistent naming conventions

| Uncertainty                         | Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%] | Paper $\frac{\Delta\sigma_{tar{t}Z}}{\sigma_{tar{t}Z}}$ [%] |
|-------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|
| ttZ parton shower                   | 3.1                                                                   | 3.1                                                         |
| tWZ modeling                        | 2.9                                                                   | 2.9                                                         |
| b-tagging                           | 2.9                                                                   | 2.9                                                         |
| WZ/ZZ + jets modeling               | 2.7                                                                   | 2.8                                                         |
| tZq modeling                        | 2.6                                                                   | 2.6                                                         |
| Lepton                              | 2.3                                                                   | 2.3                                                         |
| Luminosity                          | 2.2                                                                   | 2.2                                                         |
| $	ext{Jets} + E_T^{miss}$           | 2.1                                                                   | 2.1                                                         |
| Fake leptons                        | 2.1                                                                   | 2.1                                                         |
| $tar{t}Z$ ISR                       | 1.7                                                                   | 1.6                                                         |
| $t\bar{t}Z\mu_F$ and $\mu_r$ scales | 0.9                                                                   | 0.9                                                         |
| Other backgrounds                   | 0.8                                                                   | 0.7                                                         |
| Pile-up                             | 0.7                                                                   | 0.7                                                         |
| $t ar{t} Z$ PDF                     | 0.2                                                                   | 0.2                                                         |
| Stat                                | 5.2                                                                   | 5.2                                                         |

| Uncertainty                         | Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%] | Paper $\frac{\Delta\sigma_{tar{t}Z}}{\sigma_{tar{t}Z}}$ [%] | Assign | Systematic uncertainties               |
|-------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------|----------------------------------------|
| ttZ parton shower                   | 3.1                                                                   | 3.1                                                         |        | Beam                                   |
| tWZ modeling                        | 2.9                                                                   | 2.9                                                         |        | Background (Separate for each channel) |
| b-tagging                           | 2.9                                                                   | 2.9                                                         |        | ETmis                                  |
| WZ/ZZ + jets modeling               | 2.7                                                                   | 2.8                                                         |        | $\operatorname{Jets}$                  |
| tZq modeling                        | 2.6                                                                   | 2.6                                                         |        | Leptons                                |
| Lepton                              | 2.3                                                                   | 2.3                                                         |        | LightTagging                           |
| Luminosity                          | 2.2                                                                   | 2.2                                                         |        |                                        |
| $Jets + E_T^{miss}$                 | 2.1                                                                   | 2.1                                                         |        | Luminosity                             |
| Fake leptons                        | 2.1                                                                   | 2.1                                                         |        | Pileup                                 |
| $tar{t}Z$ ISR                       | 1.7                                                                   | 1.6                                                         |        | Trigger                                |
| $t\bar{t}Z\mu_F$ and $\mu_r$ scales | 0.9                                                                   | 0.9                                                         |        | Tune                                   |
| Other backgrounds                   | 0.8                                                                   | 0.7                                                         |        | bTagging                               |
| Pile-up                             | 0.7                                                                   | 0.7                                                         |        | partonShower                           |
| $tar{t}Z$ PDF                       | 0.2                                                                   | 0.2                                                         |        | ${ m tTagging}$                        |
| Stat                                | 5.2                                                                   | 5.2                                                         |        | tauTagging                             |

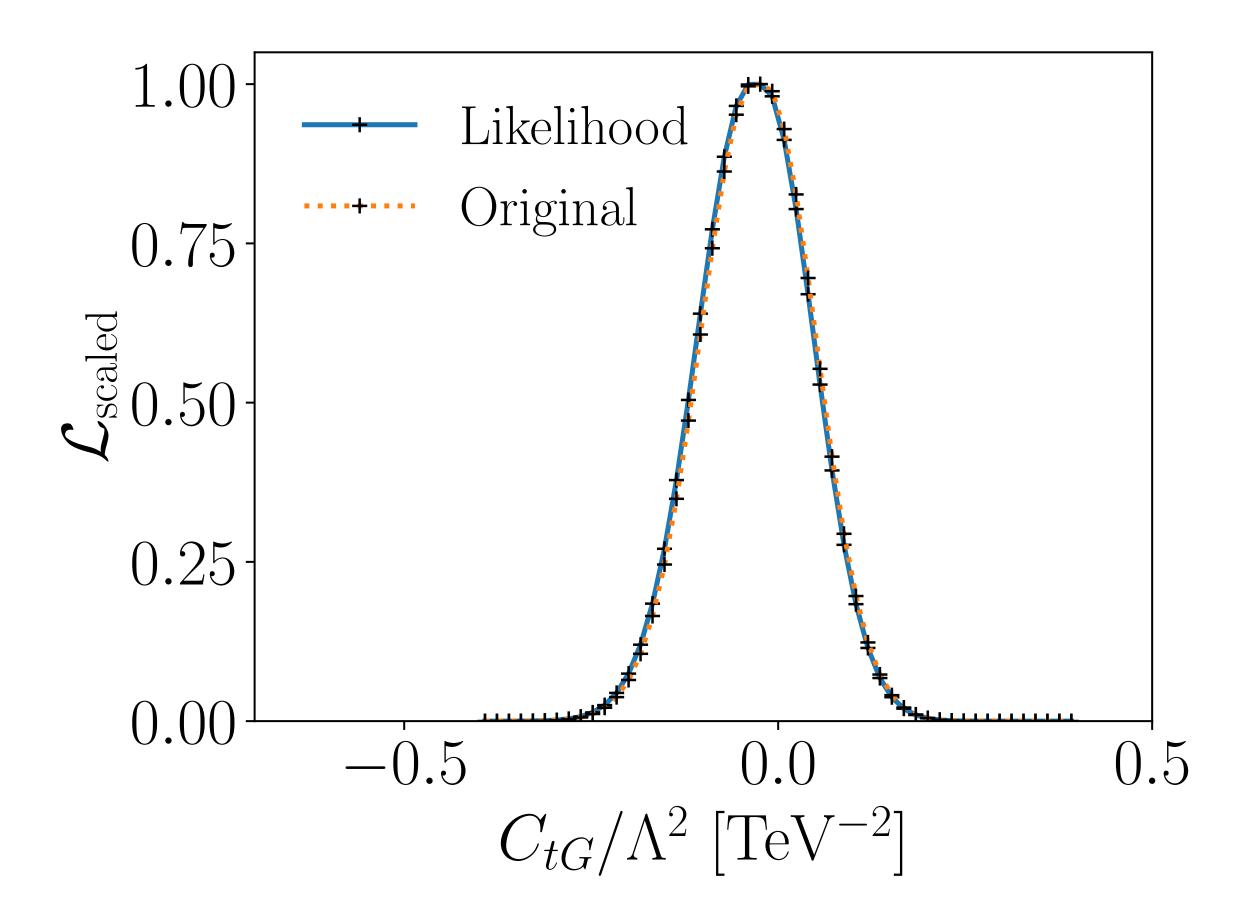
| Uncertainty                         | Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%] | Paper $\frac{\Delta\sigma_{tar{t}Z}}{\sigma_{tar{t}Z}}$ [%] | Assign | Systematic uncertainties               |
|-------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------|----------------------------------------|
| $\overline{ttZ}$ parton shower      | 3.1                                                                   | 3.1                                                         |        | Beam                                   |
| tWZ modeling                        | 2.9                                                                   | 2.9                                                         |        | Background (Separate for each channel) |
| b-tagging                           | 2.9                                                                   | 2.9                                                         |        | ETmis                                  |
| WZ/ZZ + jets modeling               | 2.7                                                                   | 2.8                                                         |        | $\operatorname{Jets}$                  |
| tZq modeling                        | 2.6                                                                   | 2.6                                                         |        | Leptons                                |
| Lepton                              | 2.3                                                                   | 2.3                                                         |        | LightTagging                           |
| Luminosity                          | 2.2                                                                   | 2.2                                                         |        |                                        |
| $\mathrm{Jets} + E_T^{miss}$        | 2.1                                                                   | 2.1                                                         |        | Luminosity                             |
| Fake leptons                        | 2.1                                                                   | 2.1                                                         |        | Pileup                                 |
| $tar{t}Z$ ISR                       | 1.7                                                                   | 1.6                                                         |        | Trigger                                |
| $t\bar{t}Z\mu_F$ and $\mu_r$ scales | 0.9                                                                   | 0.9                                                         |        | Tune                                   |
| Other backgrounds                   | 0.8                                                                   | 0.7                                                         |        | bTagging                               |
| Pile-up                             | 0.7                                                                   | 0.7                                                         |        | partonShower                           |
| $t ar{t} Z \; \mathrm{PDF}$         | 0.2                                                                   | 0.2                                                         |        | ${ m tTagging}$                        |
| Stat                                | 5.2                                                                   | 5.2                                                         |        | tauTagging                             |



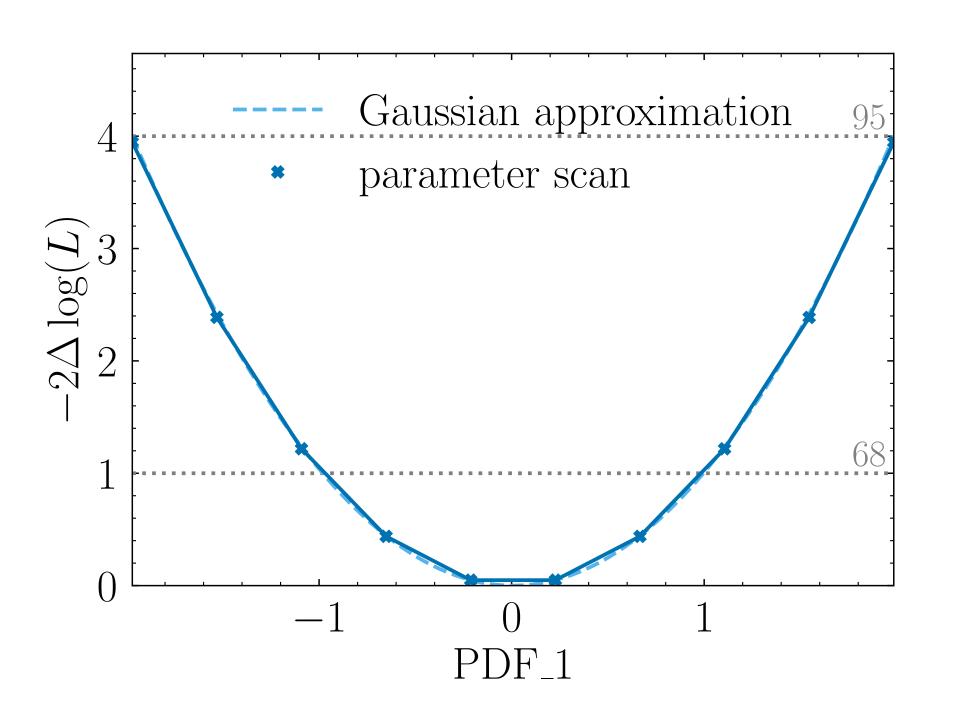
#### Uncertainties

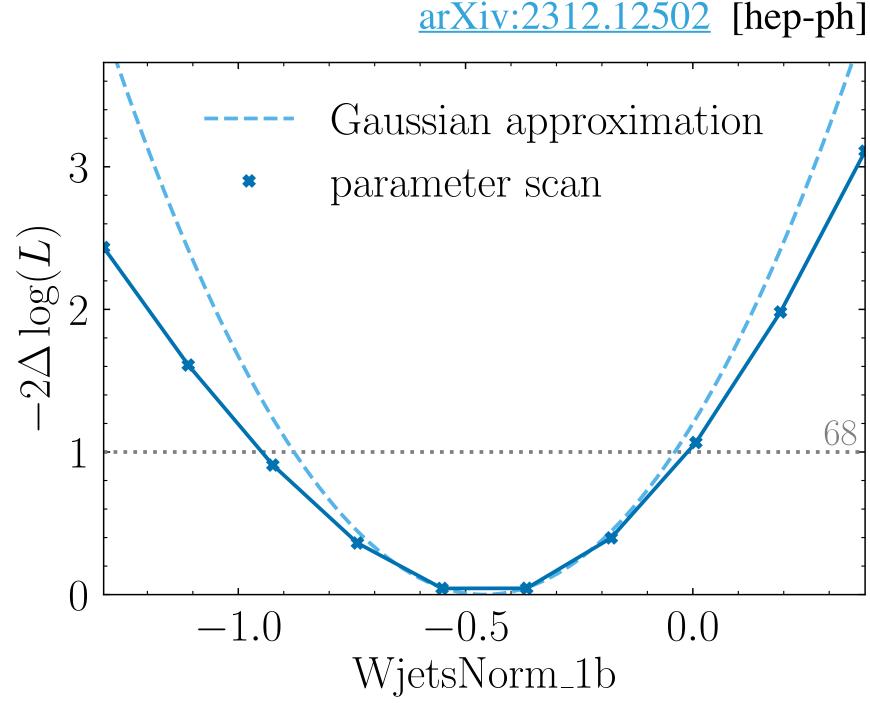
| Uncertainty                         | Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%] | Paper $\frac{\Delta\sigma_{tar{t}Z}}{\sigma_{tar{t}Z}}$ [%] | Assign | Systematic uncertainties               |
|-------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------|----------------------------------------|
| $\overline{ttZ}$ parton shower      | 3.1                                                                   | 3.1                                                         |        | Beam                                   |
| tWZ modeling                        | 2.9                                                                   | 2.9                                                         |        | Background (Separate for each channel) |
| b-tagging                           | 2.9                                                                   | 2.9                                                         |        | ETmis                                  |
| WZ/ZZ + jets modeling               | 2.7                                                                   | 2.8                                                         |        | Jets                                   |
| tZq modeling                        | 2.6                                                                   | 2.6                                                         |        | Leptons                                |
| Lepton                              | 2.3                                                                   | 2.3                                                         |        | LightTagging                           |
| Luminosity                          | 2.2                                                                   | 2.2                                                         |        |                                        |
| $\mathrm{Jets} + E_T^{miss}$        | 2.1                                                                   | 2.1                                                         |        | Luminosity                             |
| Fake leptons                        | 2.1                                                                   | 2.1                                                         |        | Pileup                                 |
| $tar{t}Z$ ISR                       | 1.7                                                                   | 1.6                                                         |        | Trigger                                |
| $t\bar{t}Z\mu_F$ and $\mu_r$ scales | 0.9                                                                   | 0.9                                                         |        | Tune                                   |
| Other backgrounds                   | 0.8                                                                   | 0.7                                                         |        | bTagging                               |
| Pile-up                             | 0.7                                                                   | 0.7                                                         |        | partonShower                           |
| $t ar{t} Z \; 	ext{PDF}$            | 0.2                                                                   | 0.2                                                         |        | ${ m tTagging}$                        |
| Stat                                | 5.2                                                                   | 5.2                                                         |        | tauTagging                             |

> Previously: Possibly incompatible groups, how to correlate?


#### Uncertainties

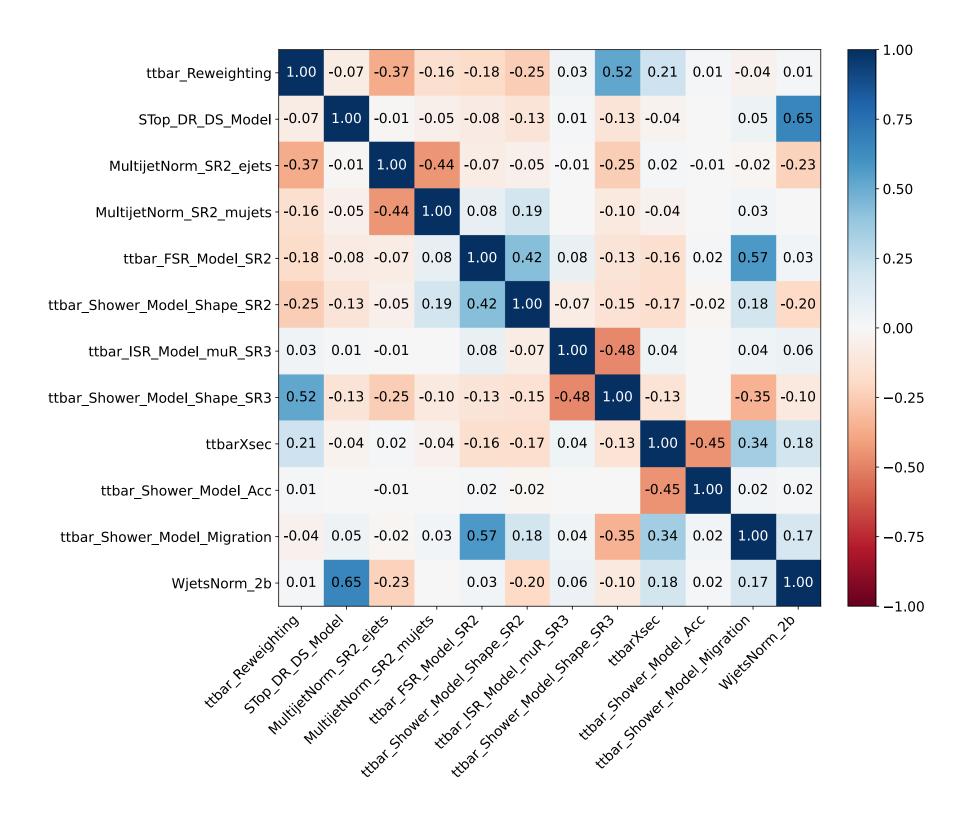
| Uncertainty                         | Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%] | Paper $\frac{\Delta\sigma_{tar{t}Z}}{\sigma_{tar{t}Z}}$ [%] | Assign | Systematic uncertainties               |
|-------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------|----------------------------------------|
| $\overline{ttZ}$ parton shower      | 3.1                                                                   | 3.1                                                         |        | Beam                                   |
| tWZ modeling                        | 2.9                                                                   | 2.9                                                         |        | Background (Separate for each channel) |
| b-tagging                           | 2.9                                                                   | 2.9                                                         |        | ETmis                                  |
| WZ/ZZ + jets modeling               | 2.7                                                                   | 2.8                                                         |        | Jets                                   |
| tZq modeling                        | 2.6                                                                   | 2.6                                                         |        | Leptons                                |
| Lepton                              | 2.3                                                                   | 2.3                                                         |        | LightTagging                           |
| Luminosity                          | 2.2                                                                   | 2.2                                                         |        |                                        |
| $\mathrm{Jets} + E_T^{miss}$        | 2.1                                                                   | 2.1                                                         |        | Luminosity                             |
| Fake leptons                        | 2.1                                                                   | 2.1                                                         |        | Pileup                                 |
| $tar{t}Z$ ISR                       | 1.7                                                                   | 1.6                                                         |        | Trigger                                |
| $t\bar{t}Z\mu_F$ and $\mu_r$ scales | 0.9                                                                   | 0.9                                                         |        | Tune                                   |
| Other backgrounds                   | 0.8                                                                   | 0.7                                                         |        | bTagging                               |
| Pile-up                             | 0.7                                                                   | 0.7                                                         |        | partonShower                           |
| $t ar{t} Z \; 	ext{PDF}$            | 0.2                                                                   | 0.2                                                         |        | ${ m tTagging}$                        |
| Stat                                | 5.2                                                                   | 5.2                                                         |        | tauTagging                             |


➤ Now: Simply separate the nuisance parameters in profile likelihood fit


## Testing Implementation

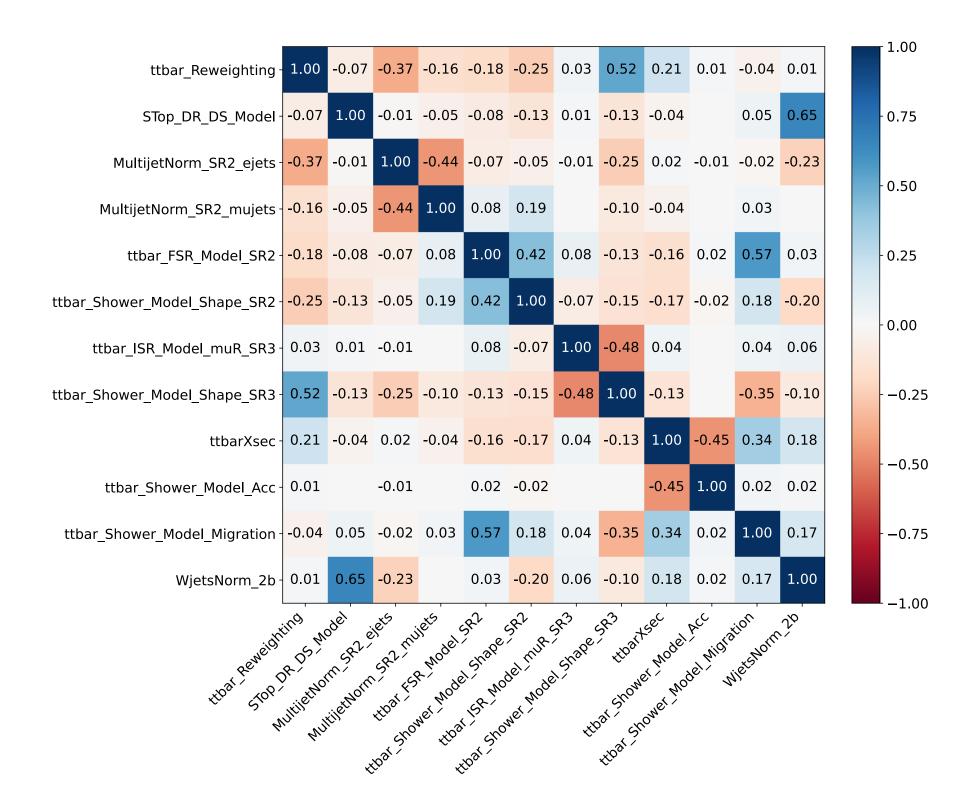
- $\blacktriangleright$  Low dimensional fit to **only**  $C_{tG}$  and total cross section measurements
- ➤ Neglect theory uncertainties
- ➤ Excellent agreement between both methods of implementation

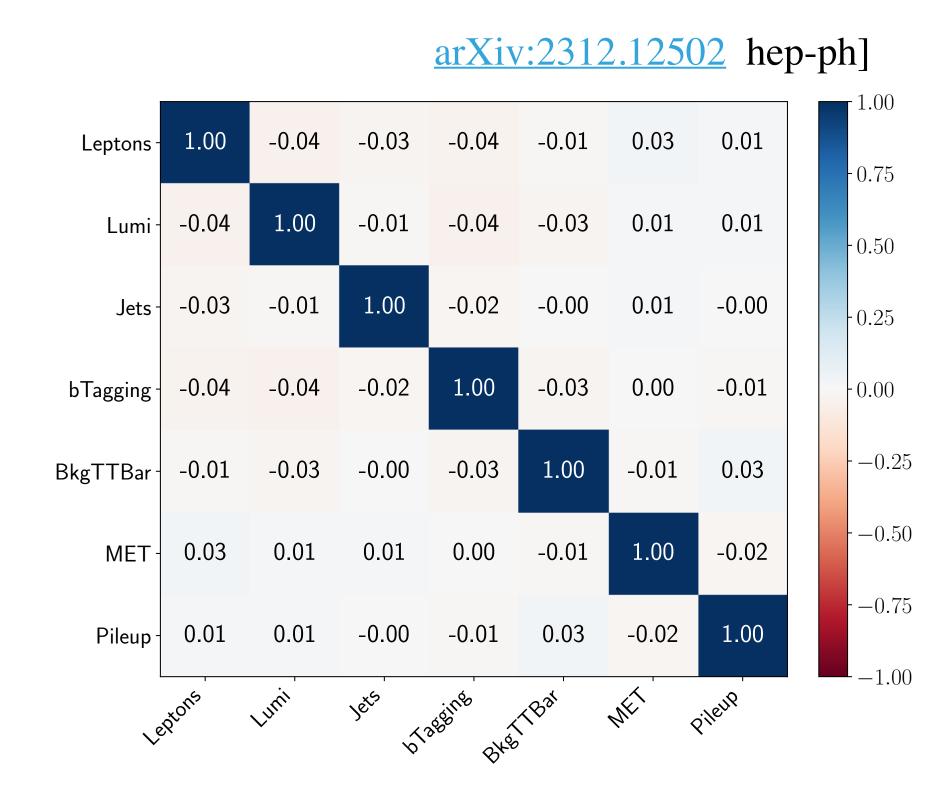



# Parameter scans with **Excabinetry**





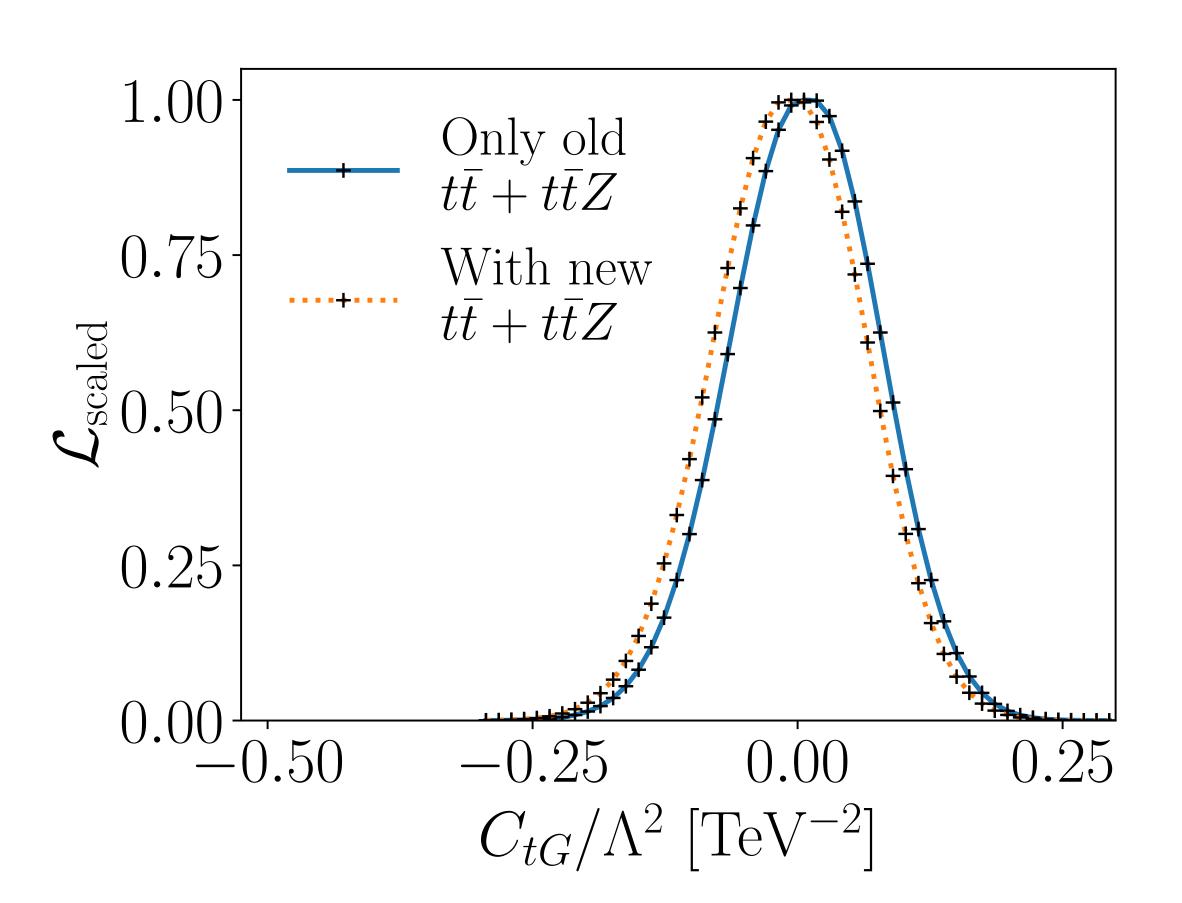

- > NPs are all very Gaussian, only small number of exceptions
  - $\blacktriangleright$  Validates Gaussian constraint term  $\mathcal{C}(\theta_i, \sigma_i)$  for systematics


## Concerning Correlations



> Currently: No correlations between uncertainties within a measurement

## **Concerning Correlations**

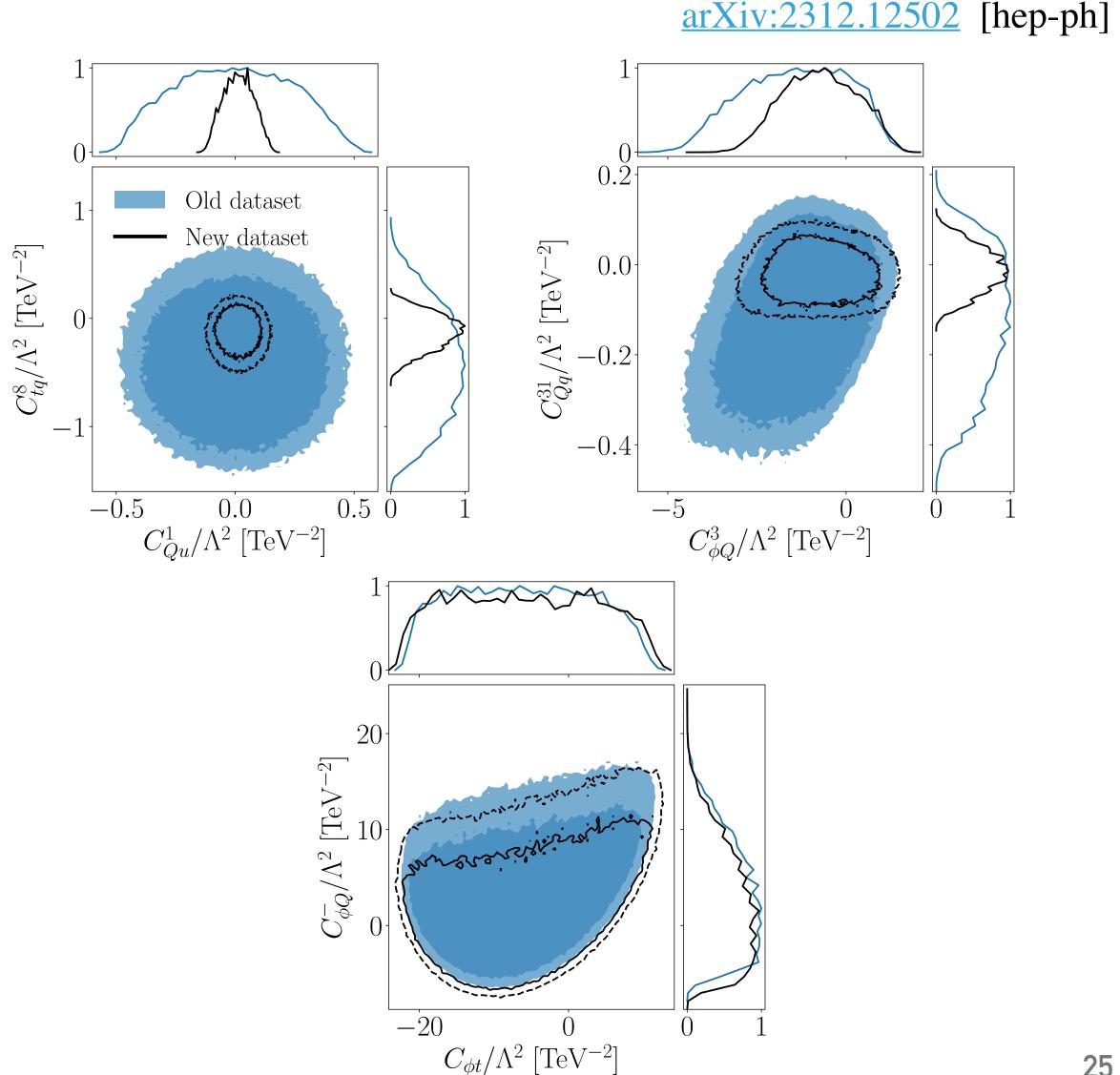




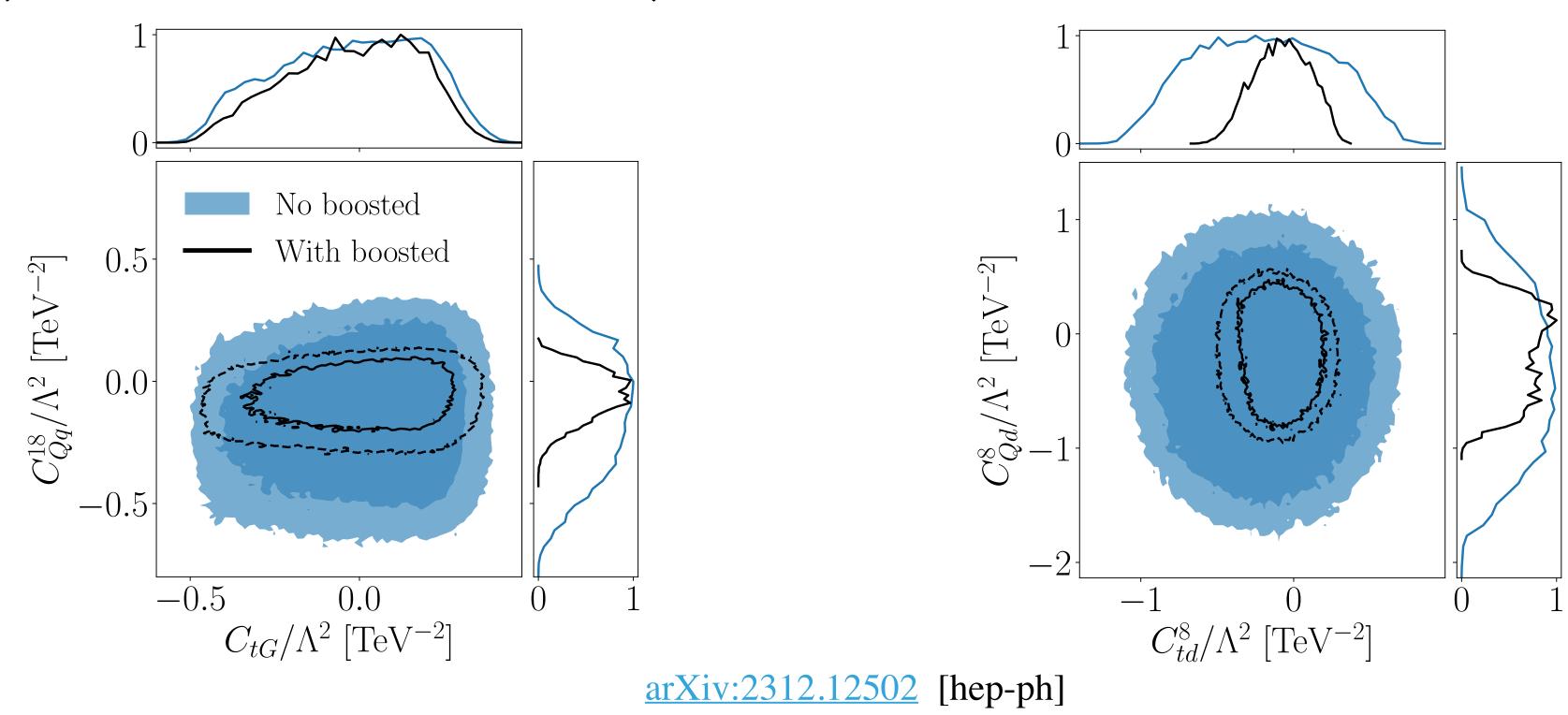

- > Currently: No correlations between uncertainties within a measurement
  - > Correlations of systematics included in SFitter are negligibly small

#### Constraints

- ➤ Visible shift from new measurements
- Constraints shift slightly after including both new measurements
- ➤ Measurements of total cross sections barely affect constraints

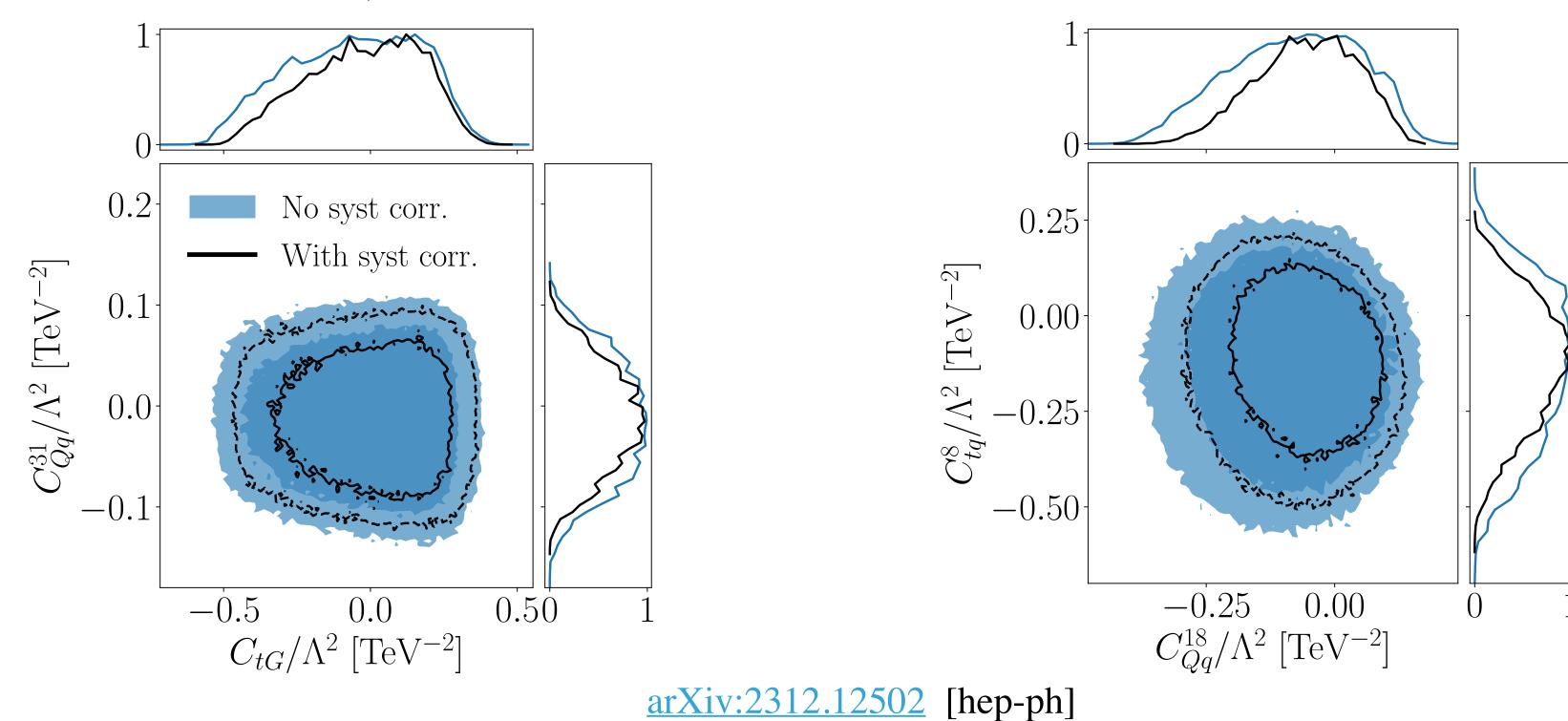



# PARTI


The global SMEFT analysis

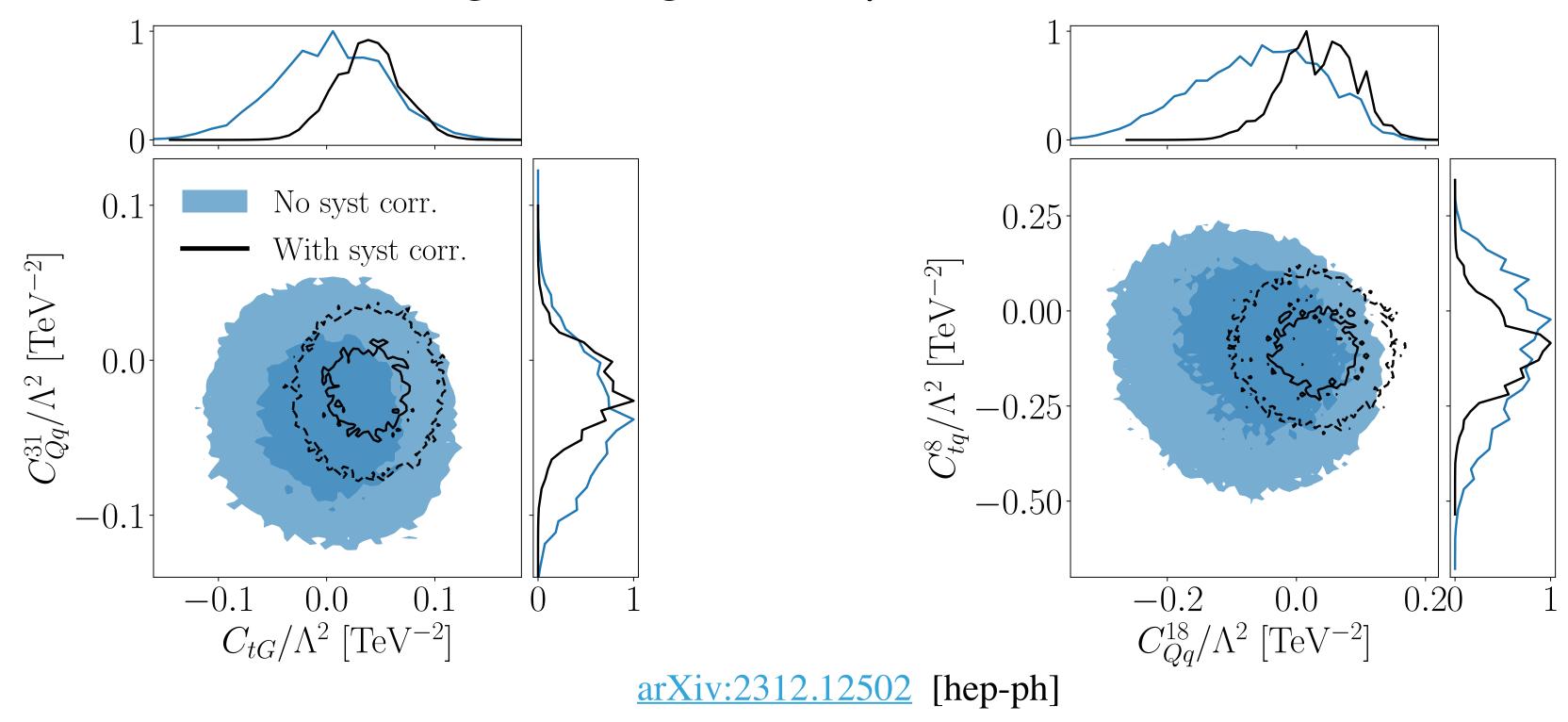
#### Results (New dataset)

- ➤ Shown operators are all constrained by one of the public likelihoods
- Visibly stronger constraints, especially for four-fermion operators
- ➤ However: Constraints barely affected by measurements with likelihoods




#### Results (Boosted measurement)




Boosted measurement very strongly constraints four-fermion operators

#### Results (Correlations)



> Correlations lead to slightly stronger constraints

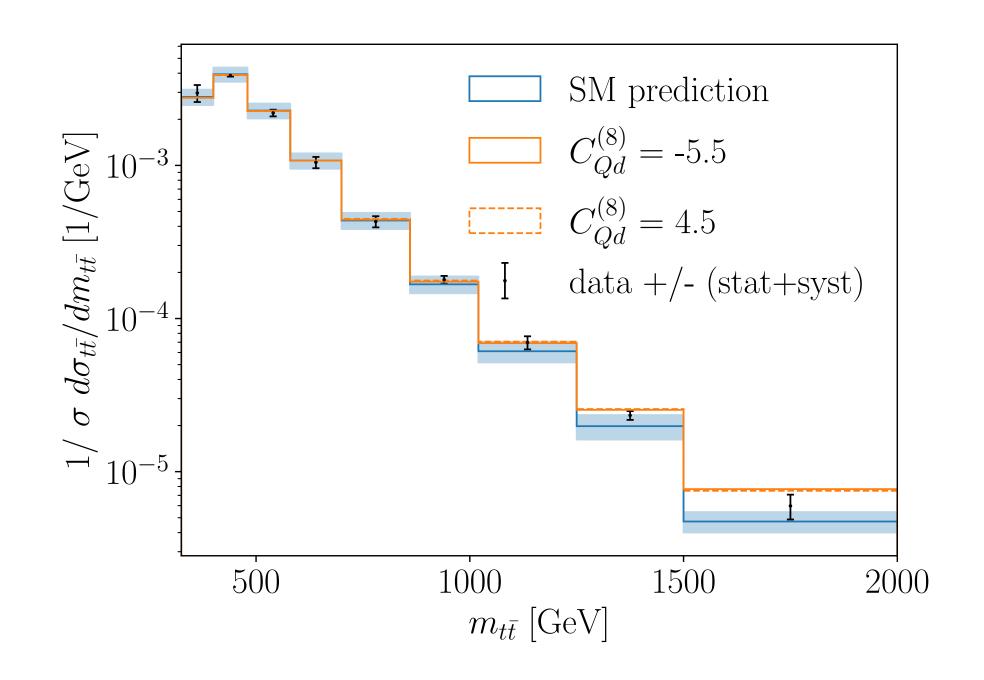
Results (Correlations, neglecting theory)

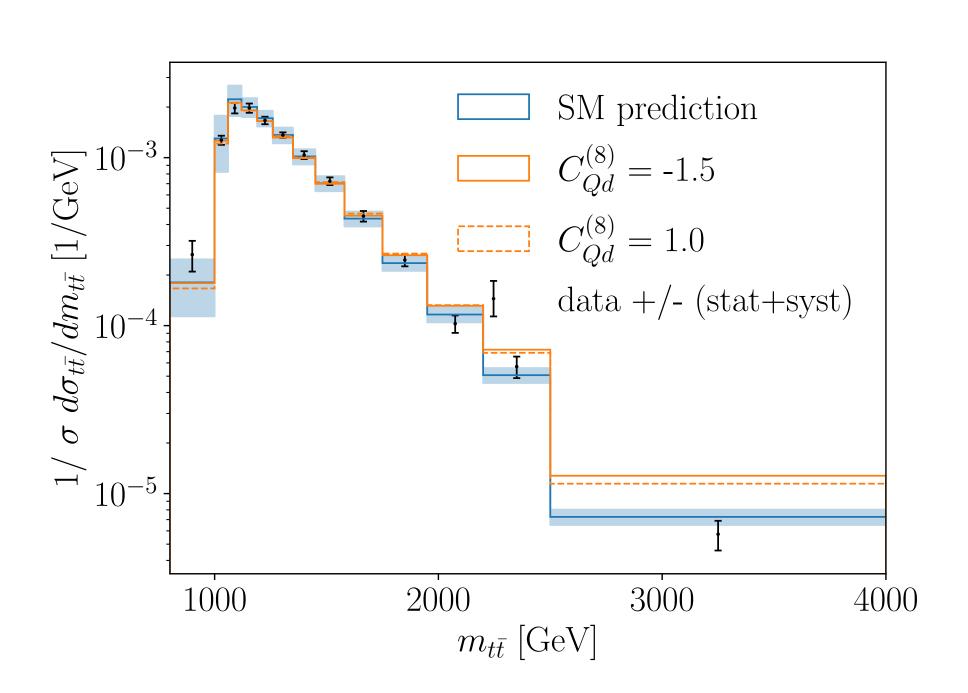


> Correlations lead to significantly different results also in the Top sector

# Concluding

- > Summary: Uncertainties and correlations are essential to SFitter constraints
  - ➤ Large effect of theory uncertainties in the top sector
  - > Published likelihoods provide an alternative way to use experimental data
    - > Validates assumptions made in previous analyses


- ➤ However: Currently available likelihoods not particularly SMEFT sensitive
  - > Publication of more differential measurements would be useful
  - ➤ Global SMEFT analysis requires data from all kinds of processes


# The full dataset

| Exp | perin      | nent  | Energy [TeV] | $\mathcal{L}  [fb^{-1}]$ | Channel            | Observable                                                                                 | # Bins | New          | Likelihood   | QCD k-factor |
|-----|------------|-------|--------------|--------------------------|--------------------|--------------------------------------------------------------------------------------------|--------|--------------|--------------|--------------|
| CM  | 1S         | [79]  | 8            | 19.7                     | $e\mu$             | $\sigma_{tar{t}}$                                                                          |        |              |              | [80]         |
| AT: | LAS        | [81]  | 8            | 20.2                     | ĺj                 | $\sigma_{tar{t}}$                                                                          |        |              |              | [80]         |
| CM  | 1S         | [82]  | 13           | 137                      | lj                 | $\sigma_{tar{t}}$                                                                          |        | <b>√</b>     |              | [80]         |
| CN  | <b>IS</b>  | [83]  | 13           | 35.9                     | 11                 | $\sigma_{tar{t}}$                                                                          |        |              |              | [80]         |
| AT: | LAS        | [84]  | 13           | 36.1                     | 11                 | $\sigma_{t ar{t}}$                                                                         |        | $\checkmark$ |              | [80]         |
| AT: | LAS        | [85]  | 13           | 36.1                     | aj                 | $\sigma_{t \bar t}$                                                                        |        | $\checkmark$ |              | [80]         |
| AT: | LAS        | [47]  | 13           | 139                      | lj                 | $\sigma_{tar{t}}$                                                                          |        | $\checkmark$ | $\checkmark$ | [80]         |
| CM  | 1S         | [86]  | 13.6         | 1.21                     | ll, lj             | $\sigma_{tar{t}}$                                                                          |        | $\checkmark$ |              | [86]         |
| CM  | <b>I</b> S | [87]  | 8            | 19.7                     | lj                 | $rac{1}{\sigma} rac{d\sigma}{dp_T^t}$                                                    | 7      |              |              | [88–90]      |
| CM  | <b>IS</b>  | [87]  | 8            | 19.7                     | 11                 | $\frac{1}{\sigma} \frac{d\sigma^t}{dp_T^t}$                                                | 5      |              |              | [88–90]      |
| AT  | LAS        | [91]  | 8            | 20.3                     | lj                 | $\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$                                           | 7      |              |              | [88–90]      |
| CM  | 1S         | [82]  | 13           | 137                      | lj                 | $egin{array}{c} rac{1}{\sigma} rac{d\sigma}{dm_{tar{t}}} \ 1  brace d\sigma \end{array}$ | 15     | <b>√</b>     |              | [45]         |
| CM  | <b>IS</b>  | [92]  | 13           | 35.9                     | 11                 | $\frac{1}{\sigma} \frac{d\sigma}{d\Delta y_{t\bar{t}}}$                                    | 8      |              |              | [88–90]      |
| AT  | LAS        | [93]  | 13           | 36                       | lj                 | $1 a\sigma$                                                                                | 9      | $\checkmark$ |              | [45]         |
| AT: | LAS        | [94]  | 13           | 139                      | $aj$ , high- $p_T$ | $rac{\overline{\sigma}}{\sigma} rac{dm_{tar{t}}}{d\sigma} \ rac{d\sigma}{dm_{tar{t}}}$  | 13     | $\checkmark$ |              |              |
| CM  | 1S         | [95]  | 8            | 19.7                     | lj                 | $A_C$                                                                                      |        |              |              | [96]         |
| CN  | <b>IS</b>  | [97]  | 8            | 19.5                     | 11                 | $A_C$                                                                                      |        |              |              | [96]         |
| AT: | LAS        | [98]  | 8            | 20.3                     | lj                 | $A_C$                                                                                      |        |              |              | [96]         |
| AT. | LAS        | [99]  | 8            | 20.3                     | 11                 | $A_C$                                                                                      |        |              |              | [96]         |
| CM  | IS         | [100] | 13           | 138                      | lj                 | $A_C$                                                                                      |        | <b>√</b>     |              | [96]         |
| AT: |            | [101] | 13           | 139                      | lj                 | $A_C^{\circ}$                                                                              |        | $\checkmark$ |              | [96]         |
| AT  | LAS        | [48]  | 13           | 139                      |                    | $\sigma_{tar{t}Z}$                                                                         |        | <b>√</b>     | ✓            | [102]        |
| CM  | IS         | [103] | 13           | 77.5                     |                    | $\sigma_{tar{t}Z}$                                                                         |        |              |              | [102]        |
| CM  | IS         | [104] | 13           | 35.9                     |                    | $\sigma_{tar{t}W}$                                                                         |        |              |              | [102]        |
| AT  | LAS        | [105] | 13           | 36.1                     |                    | $\sigma_{tar{t}W}$                                                                         |        | $\checkmark$ |              | [102]        |
| CM  | IS         | [106] | 8            | 19.7                     |                    | $\sigma_{tar{t}\gamma}$                                                                    |        | <b>√</b>     |              |              |
| AT  | LAS        | [107] | 8            | 20.2                     |                    | $\sigma_{tar{t}\gamma}$                                                                    |        | <b>√</b>     |              |              |
|     |            |       |              |                          |                    |                                                                                            |        |              |              |              |

| Exp.        | $\sqrt{s}$ [TeV] | $\mathcal{L}\left[\mathrm{fb^{-1}} ight]$ | Channel     | Observable                                    | # Bins | New          | Likelihood   | QCD k-factor |
|-------------|------------------|-------------------------------------------|-------------|-----------------------------------------------|--------|--------------|--------------|--------------|
| ATLAS [108] | 7                | 4.59                                      | t-ch        | $\sigma_{tq+ar{t}q}$                          |        |              |              |              |
| CMS [109]   | 7                | $1.17~(e),1.56~(\mu)$                     | t-ch        | $\sigma_{tq+ar{t}q}$                          |        |              |              |              |
| ATLAS [110] | 8                | 20.2                                      | t-ch        | $\sigma_{tq},\sigma_{ar{t}q}$                 |        |              |              |              |
| CMS [111]   | 8                | 19.7                                      | t-ch        | $\sigma_{tq}^{-1},\sigma_{ar{t}q}^{-1}$       |        |              |              |              |
| ATLAS [112] | 13               | 3.2                                       | t-ch        | $\sigma_{tq}^{^{1}},\sigma_{ar{t}q}^{^{1}}$   |        |              |              | [113]        |
| CMS [114]   | 13               | 2.2                                       | t-ch        | $\sigma_{tq},\sigma_{ar{t}q}$                 |        |              |              | [113]        |
| CMS [115]   | 13               | 35.9                                      | t-ch        | $\frac{1}{\sigma} \frac{d\sigma}{d p_{T,t} }$ | 5      | $\checkmark$ |              |              |
| CMS [116]   | 7                | 5.1                                       | s-ch        | $\sigma_{tar{b}+ar{t}b}$                      |        |              |              |              |
| CMS [116]   | 8                | 19.7                                      | s-ch        | $\sigma_{tar{b}+ar{t}b}$                      |        |              |              |              |
| ATLAS [117] | 8                | 20.3                                      | s-ch        | $\sigma_{tar{b}+ar{t}b}$                      |        |              |              |              |
| ATLAS [49]  | 13               | 139                                       | s-ch        | $\sigma_{tar{b}+ar{t}b}$                      |        | $\checkmark$ | $\checkmark$ |              |
| ATLAS [118] | 7                | 2.05                                      | tW (2l)     | $\sigma_{tW+ar{t}W}$                          |        |              |              |              |
| CMS [119]   | 7                | 4.9                                       | tW (2l)     | $\sigma_{tW+ar{t}W}$                          |        |              |              |              |
| ATLAS [120] | 8                | 20.3                                      | tW (2l)     | $\sigma_{tW+ar{t}W}$                          |        |              |              |              |
| ATLAS [121] | 8                | 20.2                                      | tW (1 $l$ ) | $\sigma_{tW+ar{t}W}$                          |        | $\checkmark$ |              |              |
| CMS [122]   | 8                | 12.2                                      | tW (2l)     | $\sigma_{tW+ar{t}W}$                          |        |              |              |              |
| ATLAS [123] | 13               | 3.2                                       | tW (1 $l$ ) | $\sigma_{tW+ar{t}W}$                          |        |              |              |              |
| CMS [124]   | 13               | 35.9                                      | tW (eµj)    |                                               |        |              |              |              |
| CMS [125]   | 13               | 36                                        | tW (2l)     | $\sigma_{tW+ar{t}W}$                          |        | $\checkmark$ |              |              |
| ATLAS [126] | 13               | 36.1                                      | tZ          | $\sigma_{tZq}$                                |        |              |              |              |
| ATLAS [127] | 7                | 1.04                                      |             | $F_0,F_L$                                     |        |              |              |              |
| CMS [128]   | 7                | 5                                         |             | $F_0, F_L$                                    |        |              |              |              |
| ATLAS [129] | 8                | 20.2                                      |             | $F_0,F_L$                                     |        |              |              |              |
| CMS [130]   | 8                | 19.8                                      |             | $F_0, F_L$                                    |        |              |              |              |
| ATLAS [131] | 13               | 139                                       |             | $F_0, F_L$                                    |        | ✓            |              |              |

## **Boosted measurements**





> Sensitivity of boosted measurement for a single four-fermion operator