

Beam Gas Vertex instrument Potential integration of a gas jet as target

Robert Kieffer rkieffer@cern.ch

BGC Collaboration Meeting at the Cockcroft Institute June 2019

Overview

- Beam Gas Vertex profile measurement.
- The BGV demonstrator in LHC.
- Gas jet target for the BGV.
- Jet density profile imaging.
- Conclusions

Beam Gas Vertex Profile Monitoring

- A set of few thousands Beam Gas interaction Vertex events allows to measure the HL-LHC beam size within desired accuracy.
- > This is a fully **non-invasive method** with no visible effects on the beam lifetime.

Ref: Noninvasive LHC transverse beam size measurement using inelastic beam-gas interactions A. Alexopoulos *et al.* (The BGV Collaboration) Phys. Rev. Accel. Beams 22, 042801 – Published 11 April 2019

LHC Beam Gas Vertex demonstrator

- **BGV Demonstrator** operating in LHC point 4, for full characterization and as a test bench for online processing development.
- Uses Scintillating Fibers (SciFi) detector technology from the LHCb R&D.

Status of the BGV demonstrator

The BGV demonstrator already provided **beam size measurement in specifications**.

Recent Measurement during LHC ramp

Beam Gas Vertex using Gas jet Target

Gas jet benefits for the cluster association

Gas jet open the path for vertexing capability

Gas jet reduces necessary tracker sensor surface and Exit window dimensions

- Impact on Cost: **smaller sensor** dimensions and less electronic **channels**.
- Impact on Multiple scattering error if the exit window can be made thinner.

Pressure profile in the BGV demonstrator

1.E-07 1.E-07 1.E-07 1.E-07 1.E-08 1.E-09 1.E-09 1.E-09 Aperture Aperture restriction Gas Injection restriction Vacuum Sector 0 5 10 15 20 25

Lenght of the vacuum sector [m]

Density = 2.47E15 [Ne/m³] = 2.47E9 [Ne/cm³] Integrated density along the gas target of 200 cm : 4.94E11 [Ne/cm²]

Gas jet target case

P = 2E-5 [mBar] = 2E-4 [kg/m²] T =293 [K] K_b =1.38E-23 [m²kg . s⁻² . K⁻¹]

$$pV = n k_B T \quad \Rightarrow \quad \rho = \frac{p}{k_B T}$$

Density = 4.94E17[Ne/m³] = 4.94E11 [Ne/cm³]

Integrated density along the gas target of 1 cm : 4.94E11 [Ne/cm²] SAME

SAME AS BGV DEMONSTRATOR

Gas Jet shape and dimensions

At 450GeV the beam size is around 0.8 mm sigma.

Gas jet profile can have big impact on the reconstructed beam profile !

11

Imaging the gas jet density profile ? WHY

- In order to correct the BGV beam profile from gas jet pressure profile (distortion).
- We would need an accurate (within 1%) mapping of the jet pressure profile.
- In case the jet is subject to change over time the imaging system will be installed on the BGV station to perform regular calibration.

Imaging the gas jet density profile ? HOW

The Schlieren IMAGING

The Mach-Zehnder interferometer

Ref: Interferometric Characterization od Supersonic Gas-Jet for Laser Wakefield Acceleration, Jonatan Henriksson Lund University

Robert Kieffer rkieffer@cern.ch

Index of refraction and phase advance

All optical techniques are using the phase difference created by changes of index of refraction with respect to gas pressure.

Lets assume a 1cm thick jet that is crossed twice by the laser light from an interferometer.

Inside the gas jet: P = 2E-5 [mBar] T =293 [K] $(n-1)= 3.8E^{-4}$ Density = 4.94E17[Ne/m³] = 4.94E11 [Ne/cm³]

Outside the gas jet: P = 1E-9 [mBar] T = 293 [K]Density = 2.42E13[Ne/m³] = 2.42E7[Ne/cm³] (n-1)= 1.E⁻⁴

Phase difference over 2x1cm is 15 radians

To be confirmed experimentally because the models for computing the index of refraction are numerous and not all working at ultra-high vacuum.

Using multiple pass cell to scan the jet

- 10.4 m Optical Path Length in 0.4 m Long Cell
- 600 nm 8 µm Operating Wavelength Range
- Angled Entry & Exit Ports for Ease of Alignment
- Interfaces Compatible with Thorlabs' Optomechanics

Herriott Cell from Thorlabs

Angled Optical Ports for FiberPort Collimators, 30 mm Cage System, or Ø1" Lens Tubes

A Herriott cell increases the path length of a beam through the cell. The HC10L-M02 Herriott Cell has 28 internal reflections.

Calcium Fluoride Windows Ø2" Concave Mirrors with Gold Coating and Ø4 mm Off-Axis Holes

> Gas Ports with Swagelok[®] Tube Fittings

HC10L-M02 Herriott Cell with 1/4" OD Tube Fittings

Circular multi-pass cell can achieve longer path?

Conclusions and outlook

- A gas jet target could be of real advantage for the BGV
- Need to check that a 2e⁻⁵mBar gas jet can be achieved.
- Develop a technique to image the jet profile:
 - > To confirm gas jet stability (within 1%)
 - XCheck with the experience of the BGC
 - > To allow correction on the BGV beam profile
- Redesign of the BGV gas tank for gas jet compatibility.
- Options: cluster gas jet looks even more complicated.

16