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Overview

Junction fragmentation 

Updates 

➢ JRF-finding procedure reformulation 


➢ Soft-leg treatment 


Further studies 


➢ Junction motion detailed study 


➢ Fragmentation of curved strings?


➢  overprediction


➢ General study into fraction of each 
baryon is produced from junctions 

Λb/B0

Strangeness and diquarks  

Updates 


➢ Close-packing 


➢ Strange junctions


➢ Destructive interference of popcorn mechanism 


Further studies 


➢ Tuning project


➢ Effect on  events


➢  underprediction 


➢  and  description simultaneously 
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Junction fragmentation

1

Junction fragmentation 
→ Go to JRF 

→ Fragment two softest strings first 


→ Reflect each leg on the other side of the junction (“fictitious leg”) to form a dipole string 

→ Form junction diquark 

→ Fragment last leg by fragmenting diquark — endpoint string  

Junction rest frame  
→ Typically where the angle between each of the 


legs is 120º i.e. the Mercedes frame

Does a boost to the Mercedes 
frame always exist?



b/c
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Junction Updates

 ratio shows importance of junctions on heavy baryon 
production, particularly at low 

→ heavy baryons from junctions require soft leg treatment.


Previous modelling of junctions predominantly had high energy legs 
in mind e.g. baryon number violating SUSY decays and beam 
remnants

QCD-CR minimises string lengths  
→ more likely to get short strings involved in junctions, which 
the construction wasn’t made for 


Λc/D0

p⊥
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NO JUNCTIONS

arXiv:2106.08278
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Junction Updates

WITH JUNCTIONS

NO JUNCTIONS
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Aims of updates 
→ More careful treatment for soft leg cases 
→ Remove reliance on convergence in JRF calculations  

(which was failing for around 10% of events)

 ratio shows importance of junctions on heavy baryon 
production, particularly at low 

→ heavy baryons from junctions require soft leg treatment.


Previous modelling of junctions predominantly had high energy legs 
in mind e.g. baryon number violating SUSY decays and beam 
remnants

QCD-CR minimises string lengths  
→ more likely to get short strings involved in junctions, which 
the construction wasn’t made for 


Λc/D0

p⊥
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Junction Rest Frame

If the momenta of the junction legs are at 120º angles

→ the pull in each direction on the junction is equal 

→ junction is at rest

q2 q3

q1

120º

120º120º

Consider the following:  
In the rest frame of one of the partons, 
and the angle between the other two 
partons is greater than 120º

→ cannot boost further to get a 120º frame  

What is the JRF in these cases? 
Introduce so-called “pearl-on-a-string”

q2 q3

q1

> 120º

⃗p1 = 0

q2 q3

q1
60º 60º

Not the JRF!

Mercedes frame

What is the junction rest frame?

Does a boost to the mercedes frame always exist?

*no special consideration for these cases in previous implementation

*only JRF-type considered in the previous implementation
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Soft leg treatment

For a junction to make a heavy baryon, the junction leg with the heavy 
quark can’t fragment (i.e. a “soft” junction leg) = pearl-on-a-string!

q

q q

q

qq

q

q

q

t

2t

3t

< t/2

q qq

p0
The junction gets “stuck” to the soft quark, which we 
call a pearl-on-a-string 

➢ More likely to occur for junctions with heavy flavour 
endpoints

Example of pearl-on-a-string viewed in the Ariadne frame 
of the green quark

➢ Average over the pearl motion 

➢ Fragment like a  stringq − g − q̄

How do we fragment pearl-on-a-string cases?

g

q̄q

*typically only a good 
approximation for light quarks

dx
dt

=
1

1 + m2

(p0 − 2κx)2
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Soft leg treatment

For a junction to make a heavy baryon, the junction leg with the heavy 
quark can’t fragment (i.e. a “soft” junction leg) = pearl-on-a-string!

The junction gets “stuck” to the soft quark, which we 
call a pearl-on-a-string 

➢ More likely to occur for junctions with heavy flavour 
endpoints

➢ Allow for oscillations of the soft leg around the junction
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What if we have a Mercedes frame 
but a very soft leg?



JRF-finding procedure  
What about junction systems with gluon kinks? → need an “average” JRF  
Defining the average JRF


Previous implementation → average Mercedes frame 

Updated implementation → consider junction motion over time and average this motion


→ Find JRF at different times  
→ Which partons determine the junction motion 

→ How long do these partons pull on the junction 

→ What are the next momenta to determine 


the junction motion

→ Time-weighted average over junction velocities 

→ exponential decay is used to model time dependence 

but this is somewhat arbitrary; important point is that 

early JRFs contribute more than late ones 
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Junction Rest Frame Finding 
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Junction Rest Frame Finding 
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What about junction systems with gluon kinks? → need an “average” JRF  
Defining the average JRF
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Updated implementation → consider junction motion over time and average this motion


→ Find JRF at different times  
→ Which partons determine the junction motion 

→ How long do these partons pull on the junction 

→ What are the next momenta to determine 


the junction motion

→ Time-weighted average over junction velocities 

→ exponential decay is used to model time dependence 

but this is somewhat arbitrary; important point is that 

early JRFs contribute more than late ones 
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Junction Rest Frame Finding 
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Assumptions and special cases 

Small mass gluons that result in no Mercedes frame solution (pearl-like cases)

→ use rest frame of the gluon and use the gluon mass as the time weight as an approximation 


Collinear partons  
→ often encountered due to numerical precision issues given boosts and root finding procedure 


used to find the Mercedes frame 

→ use the centre-of-mass energy/momentum and approximate the collinear pair as a diquark 


to capture the direction of motion of the junction 


CR 
→ use the rest frame of a massive parton for string length calculations if the 


Mercedes frame does not exist i.e. the early time JRF
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Questions about junctions? 

Junction motion detailed study  
→ When do we stop fragmenting towards the junction? 


Study of how stopping conditions effect junction baryon motion has been done for a fully symmetric case 

Topologies with uneven legs result in the junction motion biased in the direction of the most energetic leg (i.e. 
the last leg) 


→ Modelling of last junction leg 

Junction diquark should be treated as coming from a string break and not set up the string axis ?


  overprediction 

→ study of  vs  production 


→ other heavy flavour ratios such as  and  

→ general study of what portion of each baryon comes from junctions 

Λb/B0

Λb Λc

Λb/Λc B0/D0
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Questions about junctions? 

Junction motion detailed study  
→ When do we stop fragmenting towards the junction? 


Study of how stopping conditions effect junction baryon motion has been done for a fully symmetric case 

Topologies with uneven legs result in the junction motion biased in the direction of the most energetic leg (i.e. 
the last leg) 


→ Modelling of last junction leg 

Junction diquark should be treated as coming from a string break and not set up the string axis ?


  overprediction 

→ study of  vs  production 


→ other heavy flavour ratios such as  and  

→ general study of what portion of each baryon comes from junctions 

Λb/B0

Λb Λc

Λb/Λc B0/D0
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*Note  is lower than typically as probQQ1toQQ0join was reverted to its default values and left untuned. 
Value should be slightly lower than default value and this ratio should increase

Λc /D0

Other questions 
→ Fragmentation of curved strings?

→ String close to the junction?
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Overview

Junction fragmentation 

Updates 

➢ JRF-finding procedure reformulation 


➢ Soft-leg treatment 


Further studies 


➢ Junction motion detailed study 


➢ Fragmentation of curved strings?


➢  overprediction


➢ General study into fraction of each 
baryon is produced from junctions 

Λb/B0

Strangeness and diquarks  

Updates 


➢ Close-packing 


➢ Strange junctions


➢ Destructive interference of popcorn mechanism 


Further studies 


➢ Tuning project


➢ Effect on  events


➢  underprediction 


➢  and  description simultaneously 

e+e−

Ξc/Λc

p/π Λ/KS
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Strangeness Enhancement

Monash

QCD

Close-packing  
+ strange junctions  
+ diquark suppression

Updates:  
Included different enhancement strength parameters for strangeness, 
pT and diquark production to allow for ambiguity in the model

Dense string environments 

→ Casimir scaling of effective string tension 

→ Higher probability of strange quarks

Close-packing
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Strangeness Enhancement

Close-packing

vs.

String tension could be different from the 
vacuum case compared to near a junction

String breaks

Strange Junctions

Dense string environments 

→ Casimir scaling of effective string tension 

→ Higher probability of strange quarks

Results in strangeness enhancement 
focused in baryon sector

Monash

QCD

Close-packing  
+ strange junctions  
+ diquark suppression
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Strangeness Enhancement

Close-packing

vs.

String tension could be different from the 
vacuum case compared to near a junction

String breaks

Strange Junctions

Dense string environments 

→ Casimir scaling of effective string tension 

→ Higher probability of strange quarks

Results in strangeness enhancement 
focused in baryon sector

Monash

QCD

Close-packing  
+ strange junctions  
+ diquark suppression

Even by forcing junctions to be very strange, 

not sufficient to describe  Ξc
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Diquark Suppression

What if there’s a blue string nearby?

 Note: LHC  smaller 
than at LEP

p/π

diquark antidiquark

blue  fluctuation on the stringqq̄

blue  fluctuation breaks nearby blue string, preventing diquark formationqq̄

Diquark formation via successive colour 
fluctuations — popcorn mechanism
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Future studies 

Close packing  
- Study of triplet vs octet (clean experimental environments?) 
- LEP effects and strangeness in jets 


- Need to construct model that works with jets and  collisions

Strangeness overall  

-  underprediction  
- Study of formation in Pythia (i.e. junctions or diquarks). This will also be useful for studying the 

 and  over predictions 

Diquark suppression  
- Need CR colour tracing stored in the event to get probabilities more correct 


- Currently assume even distribution of colours of the given number of nearby strings 


-  and  ratios described simultaneously 


e+e−

Ξc

Λb p

p/π Λ/Ks

CR procedure  
- Rewrite code 

- Add probabilistic treatment to CR 



Thank you for listening!
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