Updates on junctions, strangeness and further questions

Javira Altmann, Monash University

Junction fragmentation

- Updates
 - > JRF-finding procedure reformulation
 - > Soft-leg treatment

Further studies

- > Junction motion detailed study
- > Fragmentation of curved strings?

 $> \Lambda_h / B^0$ overprediction

 \succ General study into fraction of each baryon is produced from junctions

Strangeness and diquarks

Updates

- > Close-packing
- > Strange junctions
- > Destructive interference of popcorn mechanism

Further studies

- > Tuning project
- > Effect on e^+e^- events
- $> \Xi_c / \Lambda_c$ underprediction

 $> p/\pi$ and Λ/K_S description simultaneously

Junction fragmentation

\rightarrow Go to JRF

- \rightarrow Fragment two softest strings first
 - \rightarrow Reflect each leg on the other side of the junction ("fictitious leg") to form a dipole string
- \rightarrow Form junction diquark
- \rightarrow Fragment last leg by fragmenting diquark endpoint string

Junction rest frame

 \rightarrow Typically where the angle between each of the legs is 120° i.e. the Mercedes frame

> **Does a boost to the Mercedes** frame always exist?

Junction Updates

 Λ_{c}/D^{0} ratio shows importance of junctions on heavy baryon **production**, particularly at low p_{\perp}

 \rightarrow heavy baryons from junctions require soft leg treatment.

Previous modelling of junctions predominantly had high energy legs in mind e.g. baryon number violating SUSY decays and beam remnants

QCD-CR minimises string lengths

→ more likely to get **short strings involved in junctions**, which the construction wasn't made for

Junction Updates

 Λ_c/D^0 ratio shows importance of junctions on heavy baryon **production**, particularly at low p_{\perp}

 \rightarrow heavy baryons from junctions require soft leg treatment.

Previous modelling of junctions predominantly had high energy legs in mind e.g. baryon number violating SUSY decays and beam remnants

QCD-CR minimises string lengths

→ more likely to get **short strings involved in junctions**, which the construction wasn't made for

Aims of updates

- \rightarrow More careful treatment for soft leg cases
- → Remove reliance on convergence in JRF calculations (which was failing for around 10% of events)

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Consider the following: In the rest frame of one of the partons, and the angle between the other two partons is greater than 120°

*no special consideration for these cases in previous implementation

Soft leg treatment

call a pearl-on-a-string

J. Altmann 🧞 Monash University

Soft leg treatment

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string

> More likely to occur for junctions with heavy flavour endpoints

For a junction to make a **heavy baryon**, the junction leg with the h quark can't fragment (*i.e.* a "soft" junction leg) = pearl-on-a-string

What if we have a Mercedes frame but a very soft leg?

> Allow for oscillations of the soft leg around the junction

 $q_2 q_3$ *t*/2 q_3 $\frac{p_0}{2}$ 2*t*/3 4*t*/3 *t*/6 q_2 q_3 *t*/3 q_3 5*t*/3 4*t*/9 q_3 16*t*/9 **TI***t*/18 5*t*/9 $\neg q_3$ 17*t*/9

J. Altmann 🧞 Monash University

Junction Rest Frame Finding

JRF-finding procedure

- What about junction systems with **gluon kinks**? → need an **"average" JRF** Defining the **average JRF**
 - Previous implementation → average Mercedes frame
 - Updated implementation \rightarrow consider junction motion over time and average this motion

Junction Rest Frame Finding

JRF-finding procedure

- What about junction systems with **gluon kinks**? → need an **"average" JRF** Defining the **average JRF**
 - Previous implementation → average Mercedes frame Updated implementation \rightarrow consider junction motion over time and average this motion

→ Find JRF at different times

- \rightarrow Which partons determine the junction motion
- \rightarrow How long do these partons pull on the junction
- → What are the **next momenta** to determine the junction motion

Junction Rest Frame Finding

JRF-finding procedure

- What about junction systems with gluon kinks? \rightarrow need an "average" JRF Defining the average JRF
 - Previous implementation → average Mercedes frame Updated implementation \rightarrow consider junction motion over time and average this motion

→ Find JRF at different times

- \rightarrow Which partons determine the junction motion
- \rightarrow How long do these partons pull on the junction
- → What are the **next momenta** to determine the junction motion

→ Time-weighted average over junction velocities

 \rightarrow exponential decay is used to model time dependence but this is somewhat arbitrary; important point is that early JRFs contribute more than late ones

Assumptions and special cases

Small mass gluons that result in no Mercedes frame solution (pearl-like cases) \rightarrow use rest frame of the gluon and use the gluon mass as the time weight as an approximation

Collinear partons

- → often encountered due to numerical precision issues given boosts and root finding procedure used to find the Mercedes frame
- \rightarrow use the centre-of-mass energy/momentum and approximate the collinear pair as a diquark to capture the direction of motion of the junction

CR

 \rightarrow use the rest frame of a massive parton for string length calculations if the Mercedes frame does not exist i.e. the early time JRF

Questions about junctions?

Junction motion detailed study

\rightarrow When do we stop fragmenting towards the junction?

Study of how stopping conditions effect junction baryon motion has been done for a fully symmetric case Topologies with uneven legs result in the junction motion biased in the direction of the most energetic leg (i.e. the last leg)

→ Modelling of last junction leg

Junction diquark should be treated as coming from a string break and not set up the string axis?

Λ_{h}/B^{0} overprediction

- \rightarrow study of Λ_h vs Λ_c production
- \rightarrow other heavy flavour ratios such as Λ_h/Λ_c and B^0/D^0
- → general study of what portion of each baryon comes from junctions

Questions about junctions?

Other questions

- → Fragmentation of curved strings?
- \rightarrow String close to the junction?

Λ_h/B^0 overprediction

- \rightarrow study of Λ_h vs Λ_c production
- \rightarrow other heavy flavour ratios such as Λ_h/Λ_c and B^0/D^0

 Λ_{c}^{+}/D^{0}

0.6

0.2

1.2

0.8

0.6

Theory/Data

0.6

→ general study of what portion of each baryon comes from junctions

Value should be slightly lower than default value and this ratio should increase

0

10

J. Altmann 🦝 Monash University

20

Junction fragmentation

Updates

- > JRF-finding procedure reformulation
- Soft-leg treatment

Further studies

- > Junction motion detailed study
- > Fragmentation of curved strings?

 $> \Lambda_h / B^0$ overprediction

Seneral study into fraction of each baryon is produced from junctions

Strangeness and diquarks

Updates

- > Close-packing
- Strange junctions
- > Destructive interference of popcorn mechanism

Further studies

- > Tuning project
- > Effect on e^+e^- events
- $> \Xi_c / \Lambda_c$ underprediction

 $> p/\pi$ and Λ/K_S description simultaneously

Strangeness Enhancement

Included different enhancement strength parameters for strangeness,

Strangeness Enhancement

Strangeness Enhancement

Diquark formation via successive colour fluctuations – popcorn mechanism

What if there's a blue string nearby?

Diquark Suppression

Future studies

Close packing

- Study of triplet vs octet (clean experimental environments?)
- LEP effects and strangeness in jets
 - Need to construct model that works with jets and e^+e^- collisions

Strangeness overall

- Ξ_c underprediction
 - Study of formation in Pythia (i.e. junctions or diquarks). This will also be useful for studying the Λ_{h} and p over predictions

Diquark suppression

- Need CR colour tracing stored in the event to get probabilities more correct
 - Currently assume even distribution of colours of the given number of nearby strings
- p/π and Λ/K_s ratios described simultaneously

CR procedure

- Rewrite code
- Add probabilistic treatment to CR

Thank you for listening!

