Updates for Angantyr for hadron-ion collisions

Pythia week 2024

Ilkka Helenius & Marius Utheim

April 29th, 2024

Goals

- Extend Angatyr to handle hadron-nucleus collisions where $h = \pi, K, \rho, \omega, \dots$
- Allow for event-by-event energy variation
- Allow for variation of hadron species during generation

Enable simulations for

- Particle showers in athmospfere from high-energy cosmic rays
- Hadronic component of photon-ion collisions
 - Photoproduction with an ion target (EIC)
 - Ultraperipheral collisions at the LHC

Modelling

Starting point

- Work by Marius and Torbjörn for hadron-proton collisions
 - PDFs for a generic hadron (SU21)
 - Cross section parametrizations from SaS for varius beam configurations

Required developments

- Cross section fluctuations for asymmetric beam configuration
- Initialization for varying collision energy and beam type

Default Angantyr

- A three-parameter model (k₀, σ₀, α) for cross section fluctuations, assume symmetric (nucleon-nucleon) collision, included in 8.311
- Initialized at fixed energy, usually ~ 20 generations enough

Updated model

- New collision models HeavyIon:CollisionModel = 4,5 implemented, Separate parameters for each beam (six in total)
 - Requires ~ 1000 generations for similar fit quality, hours of computing time
 - Very similar results as with the default symmetric model
 - \Rightarrow Default model sufficient for now

Parameter interpolation

- Initialize fluctuations at fixed points
- Interpolate between the points
- Parameters fairly stable for $E_{\rm cm}\gtrsim 50~{\rm GeV}$ for ho-proton

Parameter interpolation

- Initialize fluctuations at fixed points
- Interpolate between the points
- Parameters fairly stable for $E_{\rm cm}\gtrsim 50~{\rm GeV}$ for ho-proton
- Very similar cross sections

Parameter interpolation

- Initialize fluctuations at fixed points
- Interpolate between the points
- Parameters fairly stable for $E_{\rm cm}\gtrsim 50~{\rm GeV}$ for ho-proton
- Very similar cross sections
- Also multiplicities but some difference with native Pythia
- Included in 8.311

Multiplicity driven by

- Number of subcollisions
- Number of MPIs in each subcollision

We find

• Less subcollisions with mesons

Multiplicity driven by

- Number of subcollisions
- Number of MPIs in each subcollision

We find

- Less subcollisions with mesons
- But more MPIs in meson-nucleon

Multiplicity driven by

- Number of subcollisions
- Number of MPIs in each subcollision

We find

- Less subcollisions with mesons
- But more MPIs in meson-nucleon
- Double-peak structure in charged-multiplicity more pronounced

Multiplicity driven by

- Number of subcollisions
- Number of MPIs in each subcollision

We find

- Less subcollisions with mesons
- But more MPIs in meson-nucleon
- Double-peak structure in charged-multiplicity more pronounced
- Less particle production in nucleus going-direction

Multiplicity driven by

- Number of subcollisions
- Number of MPIs in each subcollision

We find

- Less subcollisions with mesons
- But more MPIs in meson-nucleon
- Double-peak structure in charged-multiplicity more pronounced
- Less particle production in nucleus going-direction

 A merge request in place for varying hadron beam type together with the energy

Comparison with data for γ +A using VMD

- ATLAS data not corrected for efficiency, estimated with $N_{
 m ch}^{
 m rec} pprox 0.8 \cdot N_{
 m ch}$
- Relative increase in multiplicity well in line with the VMD-Pb setup
- Seems that a fluctuating model needed to match data

Comparison with data for γ +A using VMD

- Multiplicity cut adjusted according to the limited efficiency
- More results and details on Thursday's seminar