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Aims and Motivation

Goals

• Extend Angatyr to handle hadron-nucleus collisions where h = π,K, ρ, ω, . . .

• Allow for event-by-event energy variation

• Allow for variation of hadron species during generation

Enable simulations for

• Particle showers in athmospfere from high-energy cosmic rays

• Hadronic component of photon-ion collisions

• Photoproduction with an ion target (EIC)

• Ultraperipheral collisions at the LHC
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Modelling

Starting point

• Work byMarius and Torbjörn for

hadron-proton collisions

• PDFs for a generic hadron (SU21)

• Cross section parametrizations

from SaS for varius beam

configurations

Required developments

• Cross section fluctuations for

asymmetric beam configuration

• Initialization for varying collision

energy and beam type

21/26

Generic hadronic interactions in Angantyr

Model test: Multiplicities at 5.02 TeV

I Bimodal peaks are due to the presence or absence of an absorptive subcollision.

I Long proton tail is driven by larger cross section and more subcollisions.

I Heavier mesons produce fewer subcollisions, but each subcollision produces more
particles, leading to a non-trivial progression from ⇢0 to � to J/ .

Marius Utheim Hadronic interactions in Angantyr
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Asymmetric beams

Default Angantyr

• A three-parameter model (k0, σ0, α) for cross section fluctuations, assume

symmetric (nucleon-nucleon) collision, included in 8.311

• Initialized at fixed energy, usually∼ 20 generations enough

Updatedmodel

• New collisionmodels HeavyIon:CollisionModel = 4,5 implemented, Separate

parameters for each beam (six in total)

• Requires∼ 1000 generations for similar fit quality, hours of computing time

• Very similar results as with the default symmetric model

⇒Default model sufficient for now
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Varying energy

Parameter interpolation

• Initialize fluctuations at fixed points

• Interpolate between the points

• Parameters fairly stable for

Ecm ≳ 50GeV for ρ-proton
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Varying energy

Parameter interpolation

• Initialize fluctuations at fixed points

• Interpolate between the points

• Parameters fairly stable for

Ecm ≳ 50GeV for ρ-proton

• Very similar cross sections
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Varying energy

Parameter interpolation

• Initialize fluctuations at fixed points

• Interpolate between the points

• Parameters fairly stable for

Ecm ≳ 50GeV for ρ-proton

• Very similar cross sections

• Alsomultiplicities but some difference

with native Pythia

• Included in 8.311
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Hadron-ion collisions

Multiplicity driven by

• Number of subcollisions

• Number ofMPIs in each subcollision

We find

• Less subcollisions withmesons
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Hadron-ion collisions

Multiplicity driven by

• Number of subcollisions

• Number ofMPIs in each subcollision

We find

• Less subcollisions withmesons

• ButmoreMPIs in meson-nucleon
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Hadron-ion collisions

Multiplicity driven by

• Number of subcollisions

• Number ofMPIs in each subcollision

We find

• Less subcollisions withmesons

• ButmoreMPIs in meson-nucleon

• Double-peak structure in

charged-multiplicity more

pronounced
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Hadron-ion collisions

Multiplicity driven by

• Number of subcollisions

• Number ofMPIs in each subcollision

We find

• Less subcollisions withmesons

• ButmoreMPIs in meson-nucleon

• Double-peak structure in

charged-multiplicity more

pronounced

• Less particle production in nucleus

going-direction
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Hadron-ion collisions

Multiplicity driven by

• Number of subcollisions

• Number ofMPIs in each subcollision

We find

• Less subcollisions withmesons

• ButmoreMPIs in meson-nucleon

• Double-peak structure in

charged-multiplicity more

pronounced

• Less particle production in nucleus

going-direction
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• Amerge request in place for

varying hadron beam type

together with the energy
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Comparison with data for γ+A using VMDG. AAD et al. PHYSICAL REVIEW C 104, 014903 (2021)

FIG. 4. Left: N rec
ch distribution in data, corrected for trigger and reconstruction efficiency and normalized per event (black points), compared

with that in DPMJET-III γ + Pb (dot-dashed green histogram), DPMJET-III γ + p (dotted red histogram), and PYTHIA γ + p (dashed blue
histogram). The bottom panel shows the ratios of the MC distributions to the data distributions. Right: "γ #η distribution in data for N rec

ch ! 10
(black points), normalized per event, and compared with that in DPMJET-III γ + Pb (dot-dashed green histogram), PYTHIA γ + p (dashed
blue histogram), peripheral HIJING Pb+Pb (solid magenta histogram), and DPMJET-III γ + p (dotted red histogram).

of the distribution in data is qualitatively similar to that in
DPMJET-III γ + Pb and Pythia γ + p simulation. However,
the distributions in the simulated photonuclear events de-
crease at smaller "γ #η values, while the distribution in data
rises. At low "γ #η, the shape in data is qualitatively similar
to that in peripheral HIJING Pb+Pb events. This comparison
suggests that the trigger-selected events contain a mixture of
peripheral Pb+Pb events and genuine photonuclear events,
with the latter dominant at "γ #η > 2.5. The possible impact
of residual peripheral Pb+Pb events in the set of selected
events is discussed in Sec. VI.

Figure 5 compares the charged-particle pseudorapidity dis-
tribution, dNch/dη, in data and simulation. The left panel
shows the dNch/dη in data, for charged particles with 0.4 <
pT < 5 GeV, for multiple N rec

ch selections in photonuclear
events. The distributions are corrected for tracking efficiency
on a per-track basis, which ranges from 0.7–0.9 depending on
track η and pT. To compare the relative shapes between N rec

ch
selections, the distributions are each normalized to have an in-
tegral of one. In all cases, the pseudorapidity distributions are
strongly asymmetric, peaking at η = −2.5 (the nucleus-going
direction) and then monotonically decreasing until η = +2.5

FIG. 5. Left: Charged-particle pseudorapidity distribution, dNch/dη, in selected N rec
ch ranges. The distributions are normalized to the same

integral and are shown in arbitrary units. Here, positive and negative η denote the photon-going and nucleus-going directions, respectively.
Right: dNch/dη distribution in data for N rec

ch > 10 (black points), normalized per event, and compared with that in DPMJET-III γ + Pb (dot-
dashed green histogram), PYTHIA γ + p (dashed blue histogram), peripheral HIJING Pb+Pb (solid magenta histogram), and DPMJET-III γ + p
(dotted red histogram) with the same reconstruction-level selection as the data. All distributions have been normalized to have the same value
as DPMJET-III γ + Pb at η = 0.
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[ATLAS: PRC 104, 014903 (2021)]
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• ATLAS data not corrected for efficiency, estimatedwithNrec
ch ≈ 0.8 · Nch

• Relative increase in multiplicity well in line with the VMD-Pb setup

• Seems that a fluctuatingmodel needed tomatch data
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Comparison with data for γ+A using VMD

G. AAD et al. PHYSICAL REVIEW C 104, 014903 (2021)

FIG. 4. Left: N rec
ch distribution in data, corrected for trigger and reconstruction efficiency and normalized per event (black points), compared

with that in DPMJET-III γ + Pb (dot-dashed green histogram), DPMJET-III γ + p (dotted red histogram), and PYTHIA γ + p (dashed blue
histogram). The bottom panel shows the ratios of the MC distributions to the data distributions. Right: "γ #η distribution in data for N rec

ch ! 10
(black points), normalized per event, and compared with that in DPMJET-III γ + Pb (dot-dashed green histogram), PYTHIA γ + p (dashed
blue histogram), peripheral HIJING Pb+Pb (solid magenta histogram), and DPMJET-III γ + p (dotted red histogram).

of the distribution in data is qualitatively similar to that in
DPMJET-III γ + Pb and Pythia γ + p simulation. However,
the distributions in the simulated photonuclear events de-
crease at smaller "γ #η values, while the distribution in data
rises. At low "γ #η, the shape in data is qualitatively similar
to that in peripheral HIJING Pb+Pb events. This comparison
suggests that the trigger-selected events contain a mixture of
peripheral Pb+Pb events and genuine photonuclear events,
with the latter dominant at "γ #η > 2.5. The possible impact
of residual peripheral Pb+Pb events in the set of selected
events is discussed in Sec. VI.

Figure 5 compares the charged-particle pseudorapidity dis-
tribution, dNch/dη, in data and simulation. The left panel
shows the dNch/dη in data, for charged particles with 0.4 <
pT < 5 GeV, for multiple N rec

ch selections in photonuclear
events. The distributions are corrected for tracking efficiency
on a per-track basis, which ranges from 0.7–0.9 depending on
track η and pT. To compare the relative shapes between N rec

ch
selections, the distributions are each normalized to have an in-
tegral of one. In all cases, the pseudorapidity distributions are
strongly asymmetric, peaking at η = −2.5 (the nucleus-going
direction) and then monotonically decreasing until η = +2.5

FIG. 5. Left: Charged-particle pseudorapidity distribution, dNch/dη, in selected N rec
ch ranges. The distributions are normalized to the same

integral and are shown in arbitrary units. Here, positive and negative η denote the photon-going and nucleus-going directions, respectively.
Right: dNch/dη distribution in data for N rec

ch > 10 (black points), normalized per event, and compared with that in DPMJET-III γ + Pb (dot-
dashed green histogram), PYTHIA γ + p (dashed blue histogram), peripheral HIJING Pb+Pb (solid magenta histogram), and DPMJET-III γ + p
(dotted red histogram) with the same reconstruction-level selection as the data. All distributions have been normalized to have the same value
as DPMJET-III γ + Pb at η = 0.
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[ATLAS: PRC 104, 014903 (2021)]
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• Multiplicity cut adjusted according to the limited efficiency

• More results and details on Thursday’s seminar
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