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Content
➡ Parallelising your code 
➡ Basic CUDA kernel to run on GPU 
➡ Memory management 
➡ NVIDIA GPU architecture and how to make code efficient 
➡ Stride loop on GPU 
➡ Getting information about resources used 
➡ Exercises 

➡ Disclaimer: Not replacement for other professional training, just my own take to get you 
started 

➡ Go through these slides and then everybody can go at own pace and ask questions when 
they arise
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Good and bad for parallelism
➡ Typically loops over big arrays are good for parallel execution 
❖ Idea is that same calculation is done on different elements of array at the same time 
❖ Requires that we get right data and right instructions at the right time 
❖ What usually works best if different “threads” do not depend on results from other threads 

➡ Often speed will depend on actual details of the HW executing calculation 
❖ What might be best for CPU is not necessarily best for GPU 
❖ Sometimes one might want to even redesign things to get best performance 

➡ There is also balance between amount of work which needs to be done and how 
quickly HW can serve data 
❖ Easier to get large gains on problems bound by computing rather then memory 

bandwidth
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Executing code on GPU
➡ I will be talking about using NVIDIA GPU for parallel execution 
➡ Our desktops have NVIDIA graphical card with some CUDA capabilities, so 

we can use them to play with ideas and develop 
➡ Need kernel which looks like __global__ void cudaKernel(args); 
❖ Return type is fixed 
❖ Arguments have to be copied, no reference (more later) 

➡ Typical Hello world kernel could look like 
__global__ void helloWorld() { 
    printf(“Hello World\n”); 
}
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Executing code on GPU
➡ Need main program, which executes given kernel 

int main( int, char** ) { 
    helloWorld<<<1, 8>>>(); 
    cudaDeviceSynchronize(); 
    return 0; 
} 

➡ Here in <<<>>> brackets we have number of blocks and number of 
threads per block 

❖ We will explain these later, for now it is enough to know that we will run 1 block 
with 8 threads, so we should see 8 “Hello World” messages on output
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Compiling code
➡ Save code to helloWorld.cu 
❖ All CUDA code uses .cu files (and .cuh for header files) 

➡ Setup environment on desktop 
module load CUDA/11.7.0 
. /cvmfs/sft.cern.ch/lcg/views/LCG_105/x86_64-el9-gcc11-opt/setup.sh 
nvcc -g -O2 -arch=sm_61 -o helloWorld helloWorld.cu 
❖ arch argument specifies for which GPU code should be generated 
❖ arch argument can be omitted and it will pick up capabilities of GPU on given machine 

➡ nvcc is kind of a wrapper, which adds some header files, defines couple of variables 
and deals with kernel invocation 

➡ This setup is one I found working where I can use all usual SW from SFT view 
combined with CUDA
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NVIDIA GPU understanding
➡ To get best out of the GPU, one has to have some understanding how they work 
➡ Each GPU has some defined number of CUDA cores along with fixed number of streaming 

multiprocessors (SM) 
❖ One in my desktop has 4 SMs 

➡ Each SM has 4 warp schedulers 
➡ Warp is smallest unit, typically 32, for which all threads in the warp execute same instruction 
❖ Best performance is gained when working with full warps as there are no idling bits 

➡ Typically SM should have enough warps to handle that it can hide latency 
❖ While one warp is being executed on scheduler, data for other warps are being prepared 
❖ Number of warps is given by number of threads and number of blocks for given kernel 
❖ I think one typically needs number of SMs times number of warp schedulers per SM times maybe 

times 3-4 warps to be able to get most out of GPU
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NVIDIA GPU understanding
➡ Be aware of branching 
➡ Modern CPU do clever tricks to hide calculation of which side of the branch to 

take by evaluating both branches in parallel while deciding which path code 
takes 
❖ This helps to speed to up things 

➡ GPUs are simpler, they do not use such tricks 
➡ GPUs in addition treat whole warp as single entity 
❖ All threads in warp evaluate same instruction 

➡ If there is branching, GPU will evaluate two branches sequentially 
❖ All threads in warp taking first path and only then all threads taking second path 
❖ Effectively all threads in warp have to spend time needed for both branches
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Memory management
➡ The CPU and GPU memory are separate entities, what is in host memory cannot 

be accessed by GPU and vice versa 
➡ This is reason why arguments of CUDA kernel has to copy values 
➡ To allocate memory use (for array of integers of given size) 

int N = 2 << 20; 
size_t bytes = N*sizeof(int); 
int* a; 
cudaMallocManaged( &a, bytes ); 

➡ This memory is accessible by both CPU and GPU 
❖ When it is accessed, there is check whether it is available and if not, it is copied between 

host and device 
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Memory management
➡ Letting memory access fail and then copy can be inefficient, if one knows 

that large chunk will be needed, one can prefetch by 
cudaMemPrefetchAsync( a, bytes, deviceId ); 

❖ After this call, your code will continue, but on the background memory will be 
copied between host and device 

❖ deviceID is ID of the given GPU or cudaCPUDeviceId constant for host 
➡ At the end when memory is not needed, it has to be freed by 

cudaFree( a );
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Stride loops
➡ Want to parallelise loop 

for ( int=0; i<N; ++i ) { 
    a[i] = value; 
} 

➡ Suppose we want to execute on M threads (M<N) and as each element is independent 
of each other, we can just split to chunks with each thread processing N/M elements 

➡ For this in our CUDA kernel we need to know which thread and block we are in and 
block size 
threadIdx.x  // variable telling which thread within block this is 
blockIdx.x    // variable telling which of the blocks we are processing 
blockDim.x  // number of threads in the block 
gridDim.x    // number of blocks
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Stride loops
➡ Want to parallelise loop 

for ( int=0; i<N; ++i ) { 
    a[i] = value; 
} 

➡ There is no unique way of splitting loop into chunks 
➡ There is good way for GPU in which all threads within warp process neighbouring 

elements 
❖ Driven by the way how memory access is done 

➡ int indexInGrid = threadIdx.x +blockIdx.x *blockDim.x; 
int stride = gridDim.x * blockDim.x; 
for ( int i = indexInGrid; i<N; i+=stride ) { 
    a[i] = value; 
}
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Execution information
➡ You can get some information of what was executed and how long it took 

by nsys command 
nsys profile --stats=true -f true -o test ./laplaceGPU
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GPU streaming
➡ GPU allows to have several concurrent streams 
➡ To create stream and execute kernel in it 

cudaStream_t stream; 
cudaStreamCreate(&stream); // create stream 
someKernel<<<number_of_blocks, threads_per_block, 0, stream>>>(); 
cudaStreamDestroy(stream); // destroy stream 

➡ Few rules 
❖ Kernels in a given streams are processed in order they are put in 
❖ Order of operations in non-default stream is not fixed, idea is that they can be executed in 

parallel if there are enough resources 
❖ Default stream is blocking, it waits with execution until other streams are done and it 

blocks other streams until it is done
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Functions on GPU
➡ Machine code for host CPU and device GPU is different 
➡ Functions need to be compiled for each side where it is going to be used 
➡ To instruct compiler to generate code for GPU 

__device__ <type> function(<args>) 
➡ To instruct code generation for CPU (can be omitted) 

__host__ <type> function(<args>) 
➡ One can have also function which can be executed on both CPU and GPU 

__device__ __host__ <type> function(<args>)
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Exercises
➡ Following are couple of exercises which you can try to do 
➡ All relevant files can be downloaded from https://cernbox.cern.ch/s/

rrVLApERLepBdL3 
➡ I have put up also my solutions to some of the problems for reference, but I 

strongly suggest you first try by yourself 
➡ If you get stuck with something, come to me and ask
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Exercise 1
➡ Login to your desktop (or other computer with NVIDIA graphics card) 
➡ Use nvidia-smi and find out what card you have 
➡ Try to find out capabilities of your card (google can help) 
➡ My desktop has Quadro P620 which has 512 CUDA cores, 4 SMs and 2 

GB of memory with bandwidth of 80.13 GB/s

17



Exercise 2
➡ Collect code for Hello world exercise and compile it 
➡ Once compiled, execute it and check that you see 8 Hello World messages 
➡ Adapt code such that it also prints block and thread ids  
➡ You can try to see what happens if you change number of threads per 

block and number of blocks
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Exercise 3
➡ It is useful to algorithmically decide on number of threads and number of blocks for your kernel 
➡ Need to find out what are available device capabilities 
➡ Start from code 

int main() { 
  cudaDeviceProp properties; 
  int deviceId; 
  int numberOfSMs; 
  cudaGetDevice(&deviceId); 
  cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount, 
deviceId); 
  cudaGetDeviceProperties( &properties, deviceId); 
} 

➡ Print number of SMs, warp size and maximum number of threads 
➡ Check what other information is available
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Exercise 4
➡ Write a code, which 
❖ creates two large arrays (suggest at least 1M elements) 
❖ Initialises all elements in each array to some value (all elements to be same, but can 

be different for the two arrays) 
❖ Adds two arrays together (c[i]=a[i]+b[i]) on GPU 

➡ In conjunction with next exercise you can try to play with 
❖ block size and number of blocks 
❖ initialise arrays on CPU and do sum on GPU with and without prefetching 
❖ initialise arrays on GPU and you can try to execute them in parallel in different 

streams 
✦ You will probably not see any real difference on GPU we have in desktops but you should be 

able to see what is going on in exercise 6 
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Exercise 5
➡ Take code from previous exercise and run 

nsys profile --stats=true -f true -o test <your executable> 
➡ Inspect output and find in it information about 
❖ Kernels execution 
❖ Data transfers between host and device 

➡ In previous exercise I suggested some variations so inspect those with nsys 
and see what helps performance and what hurts it
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Exercise 6
➡ There is also possibility to get some visual representation on what is 

executed when 
➡ On command line start nsight-sys 
➡ In “Options Preset” window select “GPU Rows on Top” and say OK 
➡ Use File ➝ Open and choose test.nsys-rep file 
➡ Under CUDA HW try to find your kernels, see in which order they are 

executed and identify data transfers 
❖ You can try initialisation of two arrays in the same stream and in different non-

default streams and check whether you can see difference
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n-body problem
➡ Good test problem is n-body simulation like moving of many bodies due to gravitational 

force 
➡ In our exercise we will make life simple by having all of the bodies same mass, so we 

can ignore mass completely 
➡ Rather than having to write everything from scratch, download nbodyCPU.cc along 

with initialized*dat files 
➡ You can compile this by nvcc and execute to try CPU version 
❖ By default it runs with 4096 bodies, adding argument 15 will run with 65536 bodies 

➡ Adapt code to run on GPU and see what speedup you can get 
❖ You will need to rethink how you store data 
❖ Do not try to do everything at the start, concentrate on the most time consuming part 
❖ When you are done, you can check against solution*dat files whether you get same result
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Laplace equation
➡ Solve Laplace’s equation  

➡ Simple way is to use relaxation method for which 

 

➡ We solve it with boundary condition that potential is V=1V on one side of the square 
and 0 on remaining three sides (and setting a=1) 

➡ You can start from python or C++ implementation I have, depending how much you 
want to write by yourself 

➡ I have plotLaplace.py script which takes filename as a single argument, which plots 
result 

∂2ϕ
∂x2

+
∂2ϕ
∂y2

= 0

ϕ(x, y) =
1
4 [ϕ(x + a, y) + ϕ(x − a, y) + ϕ(x, y + a) + ϕ(x, y − a)]
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Laplace equation
➡ You should get something which looks like plot here 
➡ This one can get tricky in a sense that it does very little  

calculation so one can make it easily slow 
❖ Think about structure of loop in kernel 
❖ Finding out whether to terminate is not trivial, think about  

sensible algorithm and whether you need to do it after each  
iteration 

❖ To find out largest deviation you are searching for reduction  
algorithm to be run on GPU 
✦ If you do not find one on web, I have put possible implementation to maxGPU.cuh to find maximum 

in a given block 
➡ I managed 1m5s on CPU with grid size 512x512 and 33s on GPU with grid size 

1024x1024
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