
CUDA programming
basics

Michal Kreps

Content
➡ Parallelising your code
➡ Basic CUDA kernel to run on GPU
➡ Memory management
➡ NVIDIA GPU architecture and how to make code efficient
➡ Stride loop on GPU
➡ Getting information about resources used
➡ Exercises

➡ Disclaimer: Not replacement for other professional training, just my own take to get you
started

➡ Go through these slides and then everybody can go at own pace and ask questions when
they arise

2

Good and bad for parallelism
➡ Typically loops over big arrays are good for parallel execution
❖ Idea is that same calculation is done on different elements of array at the same time
❖ Requires that we get right data and right instructions at the right time
❖ What usually works best if different “threads” do not depend on results from other threads

➡ Often speed will depend on actual details of the HW executing calculation
❖ What might be best for CPU is not necessarily best for GPU
❖ Sometimes one might want to even redesign things to get best performance

➡ There is also balance between amount of work which needs to be done and how
quickly HW can serve data
❖ Easier to get large gains on problems bound by computing rather then memory

bandwidth

3

Executing code on GPU
➡ I will be talking about using NVIDIA GPU for parallel execution
➡ Our desktops have NVIDIA graphical card with some CUDA capabilities, so

we can use them to play with ideas and develop
➡ Need kernel which looks like __global__ void cudaKernel(args);
❖ Return type is fixed
❖ Arguments have to be copied, no reference (more later)

➡ Typical Hello world kernel could look like
__global__ void helloWorld() {
 printf(“Hello World\n”);
}

4

Executing code on GPU
➡ Need main program, which executes given kernel

int main(int, char**) {
 helloWorld<<<1, 8>>>();
 cudaDeviceSynchronize();
 return 0;
}

➡ Here in <<<>>> brackets we have number of blocks and number of
threads per block

❖ We will explain these later, for now it is enough to know that we will run 1 block
with 8 threads, so we should see 8 “Hello World” messages on output

5

Compiling code
➡ Save code to helloWorld.cu
❖ All CUDA code uses .cu files (and .cuh for header files)

➡ Setup environment on desktop
module load CUDA/11.7.0
. /cvmfs/sft.cern.ch/lcg/views/LCG_105/x86_64-el9-gcc11-opt/setup.sh
nvcc -g -O2 -arch=sm_61 -o helloWorld helloWorld.cu
❖ arch argument specifies for which GPU code should be generated
❖ arch argument can be omitted and it will pick up capabilities of GPU on given machine

➡ nvcc is kind of a wrapper, which adds some header files, defines couple of variables
and deals with kernel invocation

➡ This setup is one I found working where I can use all usual SW from SFT view
combined with CUDA

6

NVIDIA GPU understanding
➡ To get best out of the GPU, one has to have some understanding how they work
➡ Each GPU has some defined number of CUDA cores along with fixed number of streaming

multiprocessors (SM)
❖ One in my desktop has 4 SMs

➡ Each SM has 4 warp schedulers
➡ Warp is smallest unit, typically 32, for which all threads in the warp execute same instruction
❖ Best performance is gained when working with full warps as there are no idling bits

➡ Typically SM should have enough warps to handle that it can hide latency
❖ While one warp is being executed on scheduler, data for other warps are being prepared
❖ Number of warps is given by number of threads and number of blocks for given kernel
❖ I think one typically needs number of SMs times number of warp schedulers per SM times maybe

times 3-4 warps to be able to get most out of GPU

7

NVIDIA GPU understanding
➡ Be aware of branching
➡ Modern CPU do clever tricks to hide calculation of which side of the branch to

take by evaluating both branches in parallel while deciding which path code
takes
❖ This helps to speed to up things

➡ GPUs are simpler, they do not use such tricks
➡ GPUs in addition treat whole warp as single entity
❖ All threads in warp evaluate same instruction

➡ If there is branching, GPU will evaluate two branches sequentially
❖ All threads in warp taking first path and only then all threads taking second path
❖ Effectively all threads in warp have to spend time needed for both branches

8

Memory management
➡ The CPU and GPU memory are separate entities, what is in host memory cannot

be accessed by GPU and vice versa
➡ This is reason why arguments of CUDA kernel has to copy values
➡ To allocate memory use (for array of integers of given size)

int N = 2 << 20;
size_t bytes = N*sizeof(int);
int* a;
cudaMallocManaged(&a, bytes);

➡ This memory is accessible by both CPU and GPU
❖ When it is accessed, there is check whether it is available and if not, it is copied between

host and device

9

Memory management
➡ Letting memory access fail and then copy can be inefficient, if one knows

that large chunk will be needed, one can prefetch by
cudaMemPrefetchAsync(a, bytes, deviceId);

❖ After this call, your code will continue, but on the background memory will be
copied between host and device

❖ deviceID is ID of the given GPU or cudaCPUDeviceId constant for host
➡ At the end when memory is not needed, it has to be freed by

cudaFree(a);

10

Stride loops
➡ Want to parallelise loop

for (int=0; i<N; ++i) {
 a[i] = value;
}

➡ Suppose we want to execute on M threads (M<N) and as each element is independent
of each other, we can just split to chunks with each thread processing N/M elements

➡ For this in our CUDA kernel we need to know which thread and block we are in and
block size
threadIdx.x // variable telling which thread within block this is
blockIdx.x // variable telling which of the blocks we are processing
blockDim.x // number of threads in the block
gridDim.x // number of blocks

11

Stride loops
➡ Want to parallelise loop

for (int=0; i<N; ++i) {
 a[i] = value;
}

➡ There is no unique way of splitting loop into chunks
➡ There is good way for GPU in which all threads within warp process neighbouring

elements
❖ Driven by the way how memory access is done

➡ int indexInGrid = threadIdx.x +blockIdx.x *blockDim.x;
int stride = gridDim.x * blockDim.x;
for (int i = indexInGrid; i<N; i+=stride) {
 a[i] = value;
}

12

Execution information
➡ You can get some information of what was executed and how long it took

by nsys command
nsys profile --stats=true -f true -o test ./laplaceGPU

13

GPU streaming
➡ GPU allows to have several concurrent streams
➡ To create stream and execute kernel in it

cudaStream_t stream;
cudaStreamCreate(&stream); // create stream
someKernel<<<number_of_blocks, threads_per_block, 0, stream>>>();
cudaStreamDestroy(stream); // destroy stream

➡ Few rules
❖ Kernels in a given streams are processed in order they are put in
❖ Order of operations in non-default stream is not fixed, idea is that they can be executed in

parallel if there are enough resources
❖ Default stream is blocking, it waits with execution until other streams are done and it

blocks other streams until it is done

14

Functions on GPU
➡ Machine code for host CPU and device GPU is different
➡ Functions need to be compiled for each side where it is going to be used
➡ To instruct compiler to generate code for GPU

__device__ <type> function(<args>)
➡ To instruct code generation for CPU (can be omitted)

__host__ <type> function(<args>)
➡ One can have also function which can be executed on both CPU and GPU

__device__ __host__ <type> function(<args>)

15

Exercises
➡ Following are couple of exercises which you can try to do
➡ All relevant files can be downloaded from https://cernbox.cern.ch/s/

rrVLApERLepBdL3
➡ I have put up also my solutions to some of the problems for reference, but I

strongly suggest you first try by yourself
➡ If you get stuck with something, come to me and ask

16

https://cernbox.cern.ch/s/rrVLApERLepBdL3
https://cernbox.cern.ch/s/rrVLApERLepBdL3

Exercise 1
➡ Login to your desktop (or other computer with NVIDIA graphics card)
➡ Use nvidia-smi and find out what card you have
➡ Try to find out capabilities of your card (google can help)
➡ My desktop has Quadro P620 which has 512 CUDA cores, 4 SMs and 2

GB of memory with bandwidth of 80.13 GB/s

17

Exercise 2
➡ Collect code for Hello world exercise and compile it
➡ Once compiled, execute it and check that you see 8 Hello World messages
➡ Adapt code such that it also prints block and thread ids
➡ You can try to see what happens if you change number of threads per

block and number of blocks

18

Exercise 3
➡ It is useful to algorithmically decide on number of threads and number of blocks for your kernel
➡ Need to find out what are available device capabilities
➡ Start from code

int main() {
 cudaDeviceProp properties;
 int deviceId;
 int numberOfSMs;
 cudaGetDevice(&deviceId);
 cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount,
deviceId);
 cudaGetDeviceProperties(&properties, deviceId);
}

➡ Print number of SMs, warp size and maximum number of threads
➡ Check what other information is available

19

Exercise 4
➡ Write a code, which
❖ creates two large arrays (suggest at least 1M elements)
❖ Initialises all elements in each array to some value (all elements to be same, but can

be different for the two arrays)
❖ Adds two arrays together (c[i]=a[i]+b[i]) on GPU

➡ In conjunction with next exercise you can try to play with
❖ block size and number of blocks
❖ initialise arrays on CPU and do sum on GPU with and without prefetching
❖ initialise arrays on GPU and you can try to execute them in parallel in different

streams
✦ You will probably not see any real difference on GPU we have in desktops but you should be

able to see what is going on in exercise 6
20

Exercise 5
➡ Take code from previous exercise and run

nsys profile --stats=true -f true -o test <your executable>
➡ Inspect output and find in it information about
❖ Kernels execution
❖ Data transfers between host and device

➡ In previous exercise I suggested some variations so inspect those with nsys
and see what helps performance and what hurts it

21

Exercise 6
➡ There is also possibility to get some visual representation on what is

executed when
➡ On command line start nsight-sys
➡ In “Options Preset” window select “GPU Rows on Top” and say OK
➡ Use File ➝ Open and choose test.nsys-rep file
➡ Under CUDA HW try to find your kernels, see in which order they are

executed and identify data transfers
❖ You can try initialisation of two arrays in the same stream and in different non-

default streams and check whether you can see difference

22

n-body problem
➡ Good test problem is n-body simulation like moving of many bodies due to gravitational

force
➡ In our exercise we will make life simple by having all of the bodies same mass, so we

can ignore mass completely
➡ Rather than having to write everything from scratch, download nbodyCPU.cc along

with initialized*dat files
➡ You can compile this by nvcc and execute to try CPU version
❖ By default it runs with 4096 bodies, adding argument 15 will run with 65536 bodies

➡ Adapt code to run on GPU and see what speedup you can get
❖ You will need to rethink how you store data
❖ Do not try to do everything at the start, concentrate on the most time consuming part
❖ When you are done, you can check against solution*dat files whether you get same result

23

http://nbodyCPU.cc

Laplace equation
➡ Solve Laplace’s equation

➡ Simple way is to use relaxation method for which

➡ We solve it with boundary condition that potential is V=1V on one side of the square
and 0 on remaining three sides (and setting a=1)

➡ You can start from python or C++ implementation I have, depending how much you
want to write by yourself

➡ I have plotLaplace.py script which takes filename as a single argument, which plots
result

∂2ϕ
∂x2

+
∂2ϕ
∂y2

= 0

ϕ(x, y) =
1
4 [ϕ(x + a, y) + ϕ(x − a, y) + ϕ(x, y + a) + ϕ(x, y − a)]

24

Laplace equation
➡ You should get something which looks like plot here
➡ This one can get tricky in a sense that it does very little

calculation so one can make it easily slow
❖ Think about structure of loop in kernel
❖ Finding out whether to terminate is not trivial, think about

sensible algorithm and whether you need to do it after each
iteration

❖ To find out largest deviation you are searching for reduction
algorithm to be run on GPU
✦ If you do not find one on web, I have put possible implementation to maxGPU.cuh to find maximum

in a given block
➡ I managed 1m5s on CPU with grid size 512x512 and 33s on GPU with grid size

1024x1024
25

