CUDA programming basics

Michal Kreps

Content

- ➡ Parallelising your code
- ➡ Basic CUDA kernel to run on GPU
- ➡ Memory management
- ➡ NVIDIA GPU architecture and how to make code efficient
- ➡ Stride loop on GPU
- ➡ Getting information about resources used
- ➡ Exercises
- started
- they arise

➡ Disclaimer: Not replacement for other professional training, just my own take to get you

 \blacktriangleright Go through these slides and then everybody can go at own pace and ask questions when

Good and bad for parallelism

- ➡ Typically loops over big arrays are good for parallel execution ❖ Idea is that same calculation is done on different elements of array at the same time ❖ Requires that we get right data and right instructions at the right time ❖ What usually works best if different "threads" do not depend on results from other threads ➡ Often speed will depend on actual details of the HW executing calculation ❖ What might be best for CPU is not necessarily best for GPU ❖ Sometimes one might want to even redesign things to get best performance \blacktriangleright There is also balance between amount of work which needs to be done and how quickly HW can serve data ❖ Easier to get large gains on problems bound by computing rather then memory
	- bandwidth

Executing code on GPU

- I will be talking about using NVIDIA GPU for parallel execution
- ➡ Our desktops have NVIDIA graphical card with some CUDA capabilities, so we can use them to play with ideas and develop
- ➡ Need kernel which looks like __global__ void cudaKernel(args);
	- ❖ Return type is fixed
	- ❖ Arguments have to be copied, no reference (more later)
- ➡ Typical Hello world kernel could look like __global__ void helloWorld() { printf("Hello World\n"); }

-
-

Executing code on GPU

- ➡ Need main program, which executes given kernel int main(int, char**) { helloWorld<<<1, 8>>>(); cudaDeviceSynchronize(); return 0;
- ➡ Here in <<<>>> brackets we have number of blocks and number of threads per block

}

◆ We will explain these later, for now it is enough to know that we will run 1 block with 8 threads, so we should see 8 "Hello World" messages on output

Compiling code

. /cvmfs/sft.cern.ch/lcg/views/LCG_105/x86_64-el9-gcc11-opt/setup.sh

- ➡ Save code to helloWorld.cu
	- ❖ All CUDA code uses .cu files (and .cuh for header files)
- ➡ Setup environment on desktop module load CUDA/11.7.0
	- nvcc -g -O2 -arch=sm_61 -o helloWorld helloWorld.cu
	- ❖ arch argument specifies for which GPU code should be generated
	- ❖ arch argument can be omitted and it will pick up capabilities of GPU on given machine
- \rightarrow nvcc is kind of a wrapper, which adds some header files, defines couple of variables and deals with kernel invocation
- ➡ This setup is one I found working where I can use all usual SW from SFT view combined with CUDA

NVIDIA GPU understanding

- ➡ To get best out of the GPU, one has to have some understanding how they work
- Each GPU has some defined number of CUDA cores along with fixed number of streaming multiprocessors (SM)
	- ❖ One in my desktop has 4 SMs
- ➡ Each SM has 4 warp schedulers
- \rightarrow Warp is smallest unit, typically 32, for which all threads in the warp execute same instruction ❖ Best performance is gained when working with full warps as there are no idling bits
	-
- ➡ Typically SM should have enough warps to handle that it can hide latency
	- ❖ While one warp is being executed on scheduler, data for other warps are being prepared
	- ❖ Number of warps is given by number of threads and number of blocks for given kernel
	- ❖ I think one typically needs number of SMs times number of warp schedulers per SM times maybe times 3-4 warps to be able to get most out of GPU

NVIDIA GPU understanding

➡ Modern CPU do clever tricks to hide calculation of which side of the branch to take by evaluating both branches in parallel while deciding which path code

- ➡ Be aware of branching
- takes
	- ❖ This helps to speed to up things
- ➡ GPUs are simpler, they do not use such tricks
- ➡ GPUs in addition treat whole warp as single entity
	- ❖ All threads in warp evaluate same instruction
- \blacktriangleright If there is branching, GPU will evaluate two branches sequentially
	- ❖ All threads in warp taking first path and only then all threads taking second path
	- ❖ Effectively all threads in warp have to spend time needed for both branches

Memory management

➡ The CPU and GPU memory are separate entities, what is in host memory cannot

- be accessed by GPU and vice versa
- \blacktriangleright This is reason why arguments of CUDA kernel has to copy values
- ➡ To allocate memory use (for array of integers of given size) int $N = 2 << 20$; size_t bytes = N *sizeof(int); int* a; cudaMallocManaged(&a, bytes);
- ➡ This memory is accessible by both CPU and GPU
	- host and device

❖ When it is accessed, there is check whether it is available and if not, it is copied between

Memory management

 \blacktriangleright Letting memory access fail and then copy can be inefficient, if one knows that large chunk will be needed, one can prefetch by cudaMemPrefetchAsync(a, bytes, deviceId);

❖ deviceID is ID of the given GPU or cudaCPUDeviceId constant for host \rightarrow At the end when memory is not needed, it has to be freed by

❖ After this call, your code will continue, but on the background memory will be

copied between host and device

cudaFree(a);

10

Stride loops

- ➡ Want to parallelise loop for (int=0; i<N; ++i) { a[i] = value; }
-
- block size

➡ Suppose we want to execute on M threads (M<N) and as each element is independent of each other, we can just split to chunks with each thread processing N/M elements ➡ For this in our CUDA kernel we need to know which thread and block we are in and

threadIdx.x // variable telling which thread within block this is blockIdx.x // variable telling which of the blocks we are processing blockDim.x // number of threads in the block gridDim.x // number of blocks

Stride loops

- ➡ Want to parallelise loop for (int=0; i<N; ++i) { a[i] = value; }
- ➡ There is no unique way of splitting loop into chunks
- \rightarrow There is good way for GPU in which all threads within warp process neighbouring elements
	- ❖ Driven by the way how memory access is done
- \rightarrow int indexInGrid = threadIdx.x +blockIdx.x *blockDim.x; int stride = gridDim.x * blockDim.x; for (int $i = \text{indexInGrid}$; $i < N$; $i + = \text{stride}$) { a[i] = value; }

Execution information

➡ You can get some information of what was executed and how long it took by nsys command

nsys profile --stats=true -f true -o test ./laplaceGPU

GPU streaming

- ➡ GPU allows to have several concurrent streams
- ➡ To create stream and execute kernel in it cudaStream_t stream; cudaStreamCreate(&stream); // create stream cudaStreamDestroy(stream); // destroy stream

someKernel<<<number_of_blocks, threads_per_block, 0, stream>>>();

➡ Few rules

❖ Order of operations in non-default stream is not fixed, idea is that they can be executed in

- ❖ Kernels in a given streams are processed in order they are put in
- parallel if there are enough resources
- blocks other streams until it is done

❖ Default stream is blocking, it waits with execution until other streams are done and it

Functions on GPU

- ➡ Machine code for host CPU and device GPU is different
- \rightarrow Functions need to be compiled for each side where it is going to be used ➡ To instruct compiler to generate code for GPU
- __device__ <type> function(<args>)
- ➡ To instruct code generation for CPU (can be omitted) __host__ <type> function(<args>)
- ➡ One can have also function which can be executed on both CPU and GPU __device__ __host__ <type> function(<args>)

\bigcap

- \blacktriangleright Following are couple of exercises which you can try to do ■ All relevant files can be downloaded from [https://cernbox.cern.ch/s/](https://cernbox.cern.ch/s/rrVLApERLepBdL3)
- [rrVLApERLepBdL3](https://cernbox.cern.ch/s/rrVLApERLepBdL3)
- I have put up also my solutions to some of the problems for reference, but I strongly suggest you first try by yourself
- \blacktriangleright If you get stuck with something, come to me and ask

- Login to your desktop (or other computer with NVIDIA graphics card)
- ➡ Use nvidia-smi and find out what card you have
- \rightarrow Try to find out capabilities of your card (google can help)
- ➡ My desktop has Quadro P620 which has 512 CUDA cores, 4 SMs and 2 GB of memory with bandwidth of 80.13 GB/s

- ➡ Collect code for Hello world exercise and compile it
- ➡ Once compiled, execute it and check that you see 8 Hello World messages
- ➡ Adapt code such that it also prints block and thread ids
- ➡ You can try to see what happens if you change number of threads per block and number of blocks

-
- \rightarrow Need to find out what are available device capabilities
- ➡ Start from code int main() { cudaDeviceProp properties; int deviceId; int numberOfSMs; cudaGetDevice(&deviceId);
	- deviceId);
	- cudaGetDeviceProperties(&properties, deviceId); }
- ➡ Print number of SMs, warp size and maximum number of threads
- ➡ Check what other information is available

 \rightarrow It is useful to algorithmically decide on number of threads and number of blocks for your kernel

cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount,

➡ Write a code, which

- ❖ creates two large arrays (suggest at least 1M elements)
- ❖ Initialises all elements in each array to some value (all elements to be same, but can be different for the two arrays)
- ❖ Adds two arrays together (c[i]=a[i]+b[i]) on GPU
- \blacktriangleright In conjunction with next exercise you can try to play with
	- ❖ block size and number of blocks
	- ❖ initialise arrays on CPU and do sum on GPU with and without prefetching ❖ initialise arrays on GPU and you can try to execute them in parallel in different
	- streams

✦ You will probably not see any real difference on GPU we have in desktops but you should be

able to see what is going on in exercise 6

- ➡ Take code from previous exercise and run nsys profile --stats=true -f true -o test <your executable>
- \rightarrow Inspect output and find in it information about
	- ❖ Kernels execution
	- ❖ Data transfers between host and device
- In previous exercise I suggested some variations so inspect those with nsys and see what helps performance and what hurts it

- \rightarrow There is also possibility to get some visual representation on what is executed when
- ➡ On command line start nsight-sys
-
- ➡ In "Options Preset" window select "GPU Rows on Top" and say OK \rightarrow Use File \rightarrow Open and choose test.nsys-rep file
- ➡ Under CUDA HW try to find your kernels, see in which order they are executed and identify data transfers
	- ❖ You can try initialisation of two arrays in the same stream and in different nondefault streams and check whether you can see difference

n-body problem

- \rightarrow Good test problem is n-body simulation like moving of many bodies due to gravitational force
- \rightarrow In our exercise we will make life simple by having all of the bodies same mass, so we can ignore mass completely
- \rightarrow Rather than having to write everything from scratch, download nbodyCPU.cc along with initialized*dat files
- \rightarrow You can compile this by Δx and execute to try CPU version ❖ By default it runs with 4096 bodies, adding argument 15 will run with 65536 bodies ➡ Adapt code to run on GPU and see what speedup you can get ❖ You will need to rethink how you store data
-
-
- - ❖ Do not try to do everything at the start, concentrate on the most time consuming part ◆ When you are done, you can check against solution * dat files whether you get same result
	-

Laplace equation

- ➡ Solve Laplace's equation $\partial^2\phi$ $\frac{1}{\partial x^2}$ + $\partial^2 \phi$ ∂y^2
- ➡ Simple way is to use relaxation method for which $\phi(x, y) =$ 1 $\frac{1}{4} [\phi(x + a, y) + \phi(x - a, y) + \phi(x, y + a) + \phi(x, y - a)]$
- \rightarrow We solve it with boundary condition that potential is V=1V on one side of the square and 0 on remaining three sides (and setting $a=1$)
- ➡ You can start from python or C++ implementation I have, depending how much you want to write by yourself
- \blacktriangleright I have plotLaplace.py script which takes filename as a single argument, which plots result

$= 0$

$$
(y) + \phi(x, y + a) + \phi(x, y - a)
$$

Laplace equation

-
- ➡ You should get something which looks like plot here \blacktriangleright This one can get tricky in a sense that it does very little calculation so one can make it easily slow
	- ❖ Think about structure of loop in kernel
	- ❖ Finding out whether to terminate is not trivial, think about sensible algorithm and whether you need to do it after each iteration
	-
	- ❖ To find out largest deviation you are searching for reduction algorithm to be run on GPU
		- \blacklozenge If you do not find one on web, I have put possible implementation to maxGPU . The find maximum in a given block
- I managed 1m5s on CPU with grid size 512x512 and 33s on GPU with grid size 1024x1024

