CUDA programming
basics

Michal Kreps

WARWICK

a4

Content WARWICK

THE UNIVERSITY OF WARWICK

= Parallelising your code

= Basic CUDA kernel to run on GPU

= Memory management

= NVIDIA GPU architecture and how to make code efficient

= Str

ide loop on GPU

= Ge

ting Information about resources used

= Exercises

= Disclaimer: Not replacement for other professional training, just my own take to get you
started

= (50

through these slides and then everybody can go at own pace and ask gquestions when

they arise

a4

Good and bad for parallelism v arwick

THE UNIVERSITY OF WARWICK

= [ypically loops over big arrays are good for parallel execution
“ |dea is that same calculation is done on different elements of array at the same time
% Requires that we get right data and right instructions at the right time
% What usually works best if different “threads” do not depend on results from other threads

= Often speed will depend on actual details of the HW
“* What might be best for CPU is not necessarily best for G

executing calculation

PU

“* Sometimes one might want to even redesign things to get best performance
= [here IS also balance between amount of work which needs to be done and how

quickly HW can serve data

% Easier to get large gains on problems bound by computing rather then memory

bandwidth

Executing code on GPU Wwwm

THE UNIVERSITY OF WARWICK

= | will be talking about using NVIDIA GPU for parallel execution

= Our desktops have NVIDIA graphical card with some CUDA capabilities, so
we can use them to play with ideas and develop

= Need kernel which looks like global void cudaKernel(args):
“ Return type is fixed
% Arguments have to be copied, no reference (more later)

= [ypical Hello world kernel could look like
__global__ void helloWorld() {
printf(“Hello World\n”);

}

a4

Executing code on GPU WARWICK

THE UNIVERSITY OF WARWICK

= Need main program, which executes given kernel
Int main(int, char**) {
helloWorld<<<l, 8>>>();
cudabevicesynchronize();
return O;

j

= Here In <<<>>> brackets we have number of blocks and number of
threads per block

“* We will explain these later, for now it is enough to know that we will run 1 block
with 8 threads, so we should see 8 “Hello World”™ messages on output

a4

Compiling code WARWICK

THE UNIVERSITY OF WARWICK

= Save code to helloWorld.cu
 All CUDA code uses .cu files (and .cuh for header files)

= Setup environment on desktop
module load CUDA/11.7.0
./evints/sit.cern.ch/lecg/views/LOCG 1005/x36 04-el9-gecll-opt/setup.sh
nvee -g -0& -arch=sm 61 -o helloWorld helloWorld.cu
“* arch argument specifies for which GPU code should be generated

“* arch argument can be omitted and it will pick up capabilities of GPU on given machine

= Nvcce IS Kind of a wrapper, which adds some header files, defines couple of variables
and deals with kernel invocation

= This setup is one | found working where | can use all usual SW from SFT view
combined with CUDA

NVIDIA GPU understanding

= o get best out of the G
= Fach G

multiprocessors (SM)
“* One in my desktop has 4 SMs

= Fach SM has 4 warp sched
= \Warp Is smallest unit, typica

N/

Ulers

ly 32, for which a
% Best performance is gained when working with fu

threads In

a4

WARWICK

THE UNIVERSITY OF WARWICK

bits

= Typically SM should have enough warps to handle that it can hide latency

*** While one war

N
{

N/ N/
0‘0 0‘0

Umber of warps is given by numnr

NN

D IS being executed on sch

ber of t

kK one typically needs numbe

Nreads anag

- of SMs times num

times 3-4 warps to be able to get most out of GPU

U

0E

eduler, data for other warps are being pre

mber of blocks for giver

kerne

- of warp schedulers pe

r SM 1

U, one has to have some understanding how they work
U has some defined number of CUDA cores along with fixed number of streaming

the warp execute same instruction
| warps as there are no idling

pared

mes maybe

NVIDIA GPU understanding WXWV‘CK

THE UNIVERSITY OF WARWICK

= Be aware of branching

= Modern CPU do clever tricks to hide calculation of which side of the branch to

take by evaluating both branches in parallel while deciding which path code
takes

“* This helps to speed to up things
= GPUs are simpler, they do not use such tricks

= GPUs in addition treat whole warp as single entity
< All threads in warp evaluate same instruction

= |f there Is branching, GPU will evaluate two branches sequentially

% All threads in warp taking first path and only then all threads taking second path
% Effectively all threads in warp have to spend time needed for both branches

a4

Viemory management WARWICK

THE UNIVERSITY OF WARWICK

= The CPU and GPU memory are separate entities, what is in host memory cannot
be accessed by GPU and vice versa

= This is reason why arguments of CUDA kernel has to copy values
= To allocate memory use (for array of integers of given size)

int N =& << 20;
size_t bytes = N *gizeof(int):
int™ a:

cudaMallocManaged(&ea, bytes);

= This memory is accessible by both CPU and GPU

< When it is accessed, there is check whether it is available and if not, it is copied between
host and device

a4

Viemory management WARWICK

THE UNIVERSITY OF WARWICK

= | etting memory access fail and then copy can be inefficient, If one knows

that large C

hunk will be needed, one can prefetch by

cudalMem.

PrefetchAsync(a, bytes, deviceld);

“ After this call, your code will continue, but on the background memory will be
copied between host and device

< devicelD is ID of the given GPU or cudaCPUDeviceld constant for host
= At the end when memory is not needed, it has to be freed by

cudakree(

a),

10

Stride loops

= \Vant to parallelise loop
for (Int=0; i<N; ++1) {

}

all| = value;

a4

WARWICK

THE UNIVERSITY OF WARWICK

= Suppose we want to execute on M threads (M<N) and as each element is independent
of each other, we can just split to chunks with each thread processing N/M elements

= For this In our CUDA kernel we need to know which thread and block we are in and
block size

-
gridDim.x // num

threadldx.x // variable telling which thread within block this is
.

ockldx.x // variable telling which of the blocks we are processing

ockDim.x // num

Ner Of t

Ner Of

chreads in the block

blocks

11

a4

Stride |OOpS WARWICK

THE UNIVERSITY OF WARWICK

= \Want to parallelise loop
for (INnt=0; I<N; ++1) {
all| = value;

j

= [here Is N0 unique way of splitting loop Into chunks

= There is good way for GPU in which all threads within warp process neighbouring
elements
% Driven by the way how memory access is done
= int indexInGrid = threadldx.x +blockldx.x *blockDim.x;
int stride = gridDim.x * blockDIm.X;
for (int 1 = IndexInGrid; i<N; i+= Stmde)
all| = value;

j

12

Execution Information

WARWICK

THE UNIVERSITY OF WARWICK

= You can get some information of what was executed and how long it took

by nsys command

nsys profile --stats=true -t true -o test ./laplaceGP

CUDA Kernel Statistics:

void newlIteration<float=>(T1 %, T1 *, int)
void maxDev<float>(T1 *, Tl %, T1 *, int)
void init<float=>(T1 %, T1l, int)

[CUDA Unified Memory memcpy HtoD]
[CUDA Unified Memory memcpy DtoH]

Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns)
97.2 31,538,883,388 200,500 157,301.2 157,121.0 151,105 418,625 3,377.1
2.8 917,116,552 2,005 457,414.7 455,363.0 401,697 532,673 9,022.6
0.0 1,418,660 2 709,330.0 709,330.0 675,842 742,818 47,359.2
[7/8] Executing 'gpumemtimesum' stats report
CUDA Memory Operation Statistics (by time):
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Operation
63.5 6,814,465 2,004 3,400.4 2,048.0 1,696 14,624 3,457.3
36.5 3,911,134 2,007 1,948.7 1,664.0 1,280 175,137 5,420.7
[8/8] Executing 'gpumemsizesum' stats report
CUDA Memory Operation Statistics (by size):
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB) Operation
12.407 2,007 0.006 0.004 0.004 2.097 0.066 [CUDA Unified Memory memcpy DtoH]
8.208 2,004 0.004 0.004 0.004 0.004 0.000 [CUDA Unified Memory memcpy HtoD]

a4

GPU streaming WARWICK

THE UNIVERSITY OF WARWICK

= GPU allows to have several concurrent streams

= [0 create stream and execute kernel In it
cudastream._t stream;
cudastreamCreate(sestream); // create stream
someKernel<<<number_ of blocks, threads_per block, O, stream>>>();

cudastream.

= Few rules
% Kernels in a given streams are processed in order they are put in

2 Order o

- operations In Nor

parallel

N/

f there are enougr
% Default stream Is blocking, it waits with execution until other streams are done and it

Destroy(stream); // destroy stream

-default stream Is not fixed, idea is that they can be executed In
reSOUrces

blocks other streams until it Is done

14

a4

Functions on GPU WARWICK

THE UNIVERSITY OF WARWICK

= Machine code for host CPU and device GPU Is different

= Functions need to be compiled for each side where it is going to be used

= To Instruct compiler to generate code for GPU
__device <type> function(<args>)

= [0 Instruct code generation for CPU (can be omitted)
~_host <type> function(<args>)

= One can have also function which can be executed on both CPU and GPU
~_device host <type> function(<args>)

15

a4

EXercises WARWICK

THE UNIVERSITY OF WARWICK

= Following are couple of exercises which you can try to do

= All relevant files can be downloaded from https://cernbox.cern.ch/s/
rVLApERLepBdL3

= | have put up also my solutions to some of the problems for reference, but |
strongly suggest you first try by yourself

= |f you get stuck with something, come to me and ask

16

https://cernbox.cern.ch/s/rrVLApERLepBdL3
https://cernbox.cern.ch/s/rrVLApERLepBdL3

a4

Exercise 1 WARWICK

THE UNIVERSITY OF WARWICK

= |_ogin to your desktop (or other computer with NVIDIA graphics card)
= Use nvidia-smi and find out what card you have
= Try to find out capabillities of your card (google can help)

= My desktop has Quadro P620 which has 512 CUDA cores, 4 SMs and 2
GB of memory with bandwidth of 80.13 GB/s

17

a4

Exercise 2/ WARWICK

THE UNIVERSITY OF WARWICK

= (Collect code for Hello world exercise and compile it
= Once compiled, execute it and check that you see 8 Hello World messages
= Adapt code such that it also prints block and thread ids

= You can try to see what happens if you change number of threads per
block and number of blocks

18

Exercise 3 WXV%\(

THE UNIVERSITY OF WARWICK

= |t is useful to algorithmically decide on number of threads and number of blocks for your kernel
= Need to find out what are available device capabllities

= Start from code
int main() {
cudabeviceProp properties;
int deviceld;
int numberOfsMs;
cudaGetDevice(&deviceld):
cudaDeviceGetAttribute(GenumberOfsSMs, cudaDevAttrMultiProcessorCount,
deviceld);
cudaGetDeviceProperties(&eproperties, deviceld);

}

= Print number of SMs, warp size and maximum number of threads
= Check what other information is available

19

=xercise 4

= Write a code, which
% creates two large arrays (suggest at least 1M elements)

* |nitia
be d

a4

WARWICK

THE UNIVERSITY OF WARWICK

ises all elements in each array to some value (all elements to be same, but can

ifferent for the -

‘WO arrays)

“ Adds two arrays together (c[i]=ali]+bli]) on GPU

= |n conjunction with next exercise you can try to play with
“* block size and number of blocks

N

N

streams

4+ You will probably not see any real difference on GPU we have in desktops but you should be
able to see what Is going on In exercise 6

* Initialise arrays on CPU and do sum on GPU with and without prefetching
* Initialise arrays on GPU and you can try to execute them in parallel in different

20

EXercise 5 WXV%K

THE UNIVERSITY OF WARWICK

= [ake code from previous exercise and run
nsys profile --stats=true -f true -o test <your executable>

= |nspect output and find in it iInformation about
* Kernels execution
»» Data transfers between host and device

= |n previous exercise | suggested some variations so inspect those with nsys
and see what helps performance and what hurts it

21

EXxercise 6 WW\(

THE UNIVERSITY OF WARWICK

= [here Is also possibility to get some visual representation on what is
executed when

= On command line start nsight-sys
= |n “Options Preset” window select “GPU Rows on Top” and say OK
= Use File = Open and choose test.nsys-rep file

= Under CUDA HW try to find your kernels, see in which order they are
executed and identify data transfers

“* You can try initialisation of two arrays in the same stream and in different non-
default streams and check whether you can see difference

22

a4

N-DoAdy problem WARWICK

THE UNIVERSITY OF WARWICK

= (G00d test problem is n-body simulation like moving of many bodies due to gravitational

force

= |n our exercise we will make life simple by having all of the bodies same mass, so we
can ignore mass completely

= Rather than having to write everything from scratch, download nbodyCPU.cc along
with initialized *dat files

= You can compile this by nvce and execute to try CPU version
“* By default it runs with 4096 bodies, adding argument 15 will run with 65536 bodies

= Adapt code to run on GPU and see what speedup you can get

< You Wi

N/

** Do no

| need to rethink how you store data

' try to do everything at the start, concentrate on the most time consuming part

“ When you are done, you can check against solution *dat files whether you get same result

23

http://nbodyCPU.cc

a4

| aplace equation WARWICK

0 09
= Solve Laplace’s equation —— + ——— =0
ox? 0y?

= Simple way is to use relaxation method for which

1
hx.y) =7 P+ a,y) + px —a,y) + px,y + a) + p(x,y — a)|

= \Ve solve it with boundary condition that potential is V=1V on one side of the square
and O on remaining three sides (and setting a=1)

= You can start from python or C++ implementation | have, depending how much you
want to write by yourself

= | have plotlLaplace.py script which takes filename as a single argument, which plots
result

24

| aplace equation

= You should get something which looks like plot here
= [his one can get tricky in a sense that it does very little

calculation

SO one can make it easily slow

< Think about structure of loop in kernel
“* Finding out whether to terminate is not trivial, think about

sensible al
iteration

gorithm and whether you need to do it after each

< To find out largest deviation you are searching for reduction

algorithm

0 be run on GPU

a4

WARWICK

THE UNIVERSITY OF WARWICK

200

400

600

800

1000
0 200 400 600 800 1000

4+ If you do not find one on web, | have put possible implementation to maxGPU.cuh to find maximum

N a given

block

= | managed 1mbs on CPU with grid size 512x512 and 33s on GPU with grid size

1024x1024

25

