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Motivation

1) Some systematic uncertainties can be well estimated:

• Theory systematics 
• Two points systematics
• …

• Related to stat. error of control measurements
• Related to size of MC event sample 

2) But they can also be quite uncertain:
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Goal: Show how uncertain 
systematics can be implemented 
in a fit.

Non-trivial consequences!

https://xkcd.com/2110/ 

see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778, 
Canonero, E., Brazzale, A.R. & Cowan, G. Eur. Phys. J. C 83, 1100 (2023)

https://link.springer.com/article/10.1140/epjc/s10052-019-6644-4
https://link.springer.com/article/10.1140/epjc/s10052-023-12263-7


Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest (E.g., Pythia parameters)
• 𝜽 = Nuisance parameters (Systematic effects)
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E 𝒚 = 𝑓 𝝁 + ∑𝜃!



Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest (E.g., Pythia parameters)
• 𝜽 = Nuisance parameters (Systematic effects)

• Nuisance parameters are used to model systematic effects and are constrained by auxiliary 
measurements 𝒖

• The us are assumed to be independently Gaussian distributed
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E 𝒚 = 𝑓 𝝁 + ∑𝜃!

Can be a real measurement 
or just our best guess based 
on theoretical reasons



Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest (E.g., Pythia parameters)
• 𝜽 = Nuisance parameters (Systematic effects)

• Nuisance parameters are used to model systematic effects and are constrained by auxiliary 
measurements 𝒖

• The us are assumed to be independently Gaussian distributed

• The resulting Likelihood is:

𝐿 𝝁, 𝜽 = 𝑃 𝒚, 𝒖 𝝁, 𝜽 = 𝑃 𝒚|𝝁, 𝜽 ×-
!

1
2𝜋𝜎"!

𝑒# "!#$! "/&'#!
"
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Can be a real measurement 
or just our best guess based 
on theoretical reasons

E 𝒚 = 𝑓 𝝁 + ∑𝜃!



Formulation of the problem

• So, if the likelihood is

𝐿 𝝁, 𝜽 = 𝑃 𝒚, 𝒖 𝝁, 𝜽 = 𝑃 𝒚|𝝁, 𝜽 ×-
!

1
2𝜋𝜎"!

𝑒# "!#$! "/&'#!
"

• The resulting log Likelihood will be:

log 𝐿 𝝁, 𝜽 = log	𝑃 𝒚|𝝁, 𝜽 	−8
(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐
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Can be a real measurement 
or just our best guess based 
on theoretical reasons

Let systematic errors be 
potentially uncertain!



To implement “errors-on-errors” suppose the systematic variances 𝝈𝒖𝒊
𝟐  are 

adjustable parameters, and their best estimates 𝒗𝒊 are gamma distributed:

𝒗~
𝜷𝜶

𝜞(𝜶)
𝒗𝜶,𝟏𝒆,𝜷𝒗

𝜶 =
𝟏
𝟒𝜺𝒊𝟐

	 𝜷 =
𝟏

𝟒𝜺𝒊𝟐𝝈𝒖𝒊
𝟐

• 𝝈𝒖𝒊
𝟐 	Expectation value of 𝒗𝒊

• 𝜺𝒊: relative error on 𝝈𝒖𝒊: “Error on error”*
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*𝜺 used to be 𝑟 in previous 
references

Gamma distribution



• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	:

!

1
2𝜋𝜎%"

𝑒& %"&'" #/)𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿/ 𝝁, 𝜽  =	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2I

!

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊
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Gamma Variance Model (GVM)



• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	:

!

1
2𝜋𝜎%"

𝑒& %"&'" #/)𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿/ 𝝁, 𝜽  =	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2I

!

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊

• Profiling means computing

𝐿/ 𝝁, 𝜽 	= 	𝐿 𝝁, 𝜽, MM𝝈𝒖𝒊
𝟐 ,  	 MM𝝈𝒖𝒊

𝟐 = 𝑎𝑟𝑔𝑚𝑎𝑥0&"# 𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐
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Gamma Variance Model (GVM)
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I
!

(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

• The original quadratic terms in the log likelihood replaced by a logarithmic terms:

Gamma Variance Model (GVM)

I
!

𝟏
𝟐 𝟏 +

𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊



I
!

𝟏
𝟐 𝟏 +

𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊I
!

(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

• The original quadratic terms in the log likelihood replaced by a logarithmic terms:

• Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics: 
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Gamma Variance Model (GVM)



Sensitivity to outliers
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• Suppose we want to average 4 measurements all with statistical and syst errors equal to 1. 
Also assume they all have equal errors-on-errors 𝜺 (auxiliary measurements set to zero):

log 𝐿/ 𝝁, 𝜽  = −
1
2I

!

(𝑦! − 𝜇 − 𝜃!))

𝜎1"
) −

1
2I

!

1 +
1
2𝜺!)

log 1 + 2𝜺!)
𝜃!)

𝜎%"
)

Measurements 
internally compatible



Sensitivity to outliers
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1
2I

!
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Sensitivity to outliers
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• Suppose we want to average 4 measurements all with statistical and syst errors equal to 1. 
Also assume they all have equal errors-on-errors 𝜺 (auxiliary measurements set to zero):

log 𝐿/ 𝝁, 𝜽  = −
1
2I

!

(𝑦! − 𝜇 − 𝜃!))

𝜎1"
) −

1
2I

!

1 +
1
2𝜺!)

log 1 + 2𝜺!)
𝜃!)

𝜎%"
)

Measurements 
internally compatible
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1. The estimate of the mean does not change when we increase 𝜀

2. The size of the confidence interval for the mean only slightly increases, reflecting the 
extra degree of uncertainty introduced by errors-on-errors

3. If data are internally compatible results are only slightly modified

Sensitivity to outliers



• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed

16

Sensitivity to outliers
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Sensitivity to outliers

• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed
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Sensitivity to outliers

• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed



1. With increasing 𝜀, the estimate of mean is pulled less strongly by the outlier 

2. The error bar grows more significantly: the GVM treats internal incompatibility as an 
additional source of uncertainty

3. The model is sensitive to internal compatibility of the data
19

Sensitivity to outliers
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Goal: fit the parameters of a complicated non-linear function using a differential distribution. 
(a differential cross-section from a PDF fit example)

log 𝐿/ 𝐴, 𝐵, 𝜽  = −
1
2I

!

(𝑦! − 𝒇(𝑨, 𝑩) − 𝜃!))

𝜎1"
) −

1
2I

!

1 +
1
2𝜺!)

log 1 + 2𝜺!)
𝜃!)

𝜎%"
)

Realistic fit example (from PDF fitting)
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements

Errors-on-errors: 0%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements

Errors-on-errors: 10%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements

Errors-on-errors: 20%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements

Errors-on-errors: 30%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements

Errors-on-errors: 40%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements

Errors-on-errors: 50%
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Scale factor example
1. Consider two measurements of the same distribution, analogous to results from two separate 

experiments.

2. Both distributions are subject to a normalization uncertainty, which is assumed to be itself 
uncertain.
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Scale factor example
• When considering errors-on-errors, the model gives greater weight to the more internally consistent 

distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 0%
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Scale factor example
• When considering errors-on-errors, the model gives greater weight to the more internally consistent 

distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 10%
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Scale factor example
• When considering errors-on-errors, the model gives greater weight to the more internally consistent 

distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 20%
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Scale factor example
• When considering errors-on-errors, the model gives greater weight to the more internally consistent 

distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 30%
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Scale factor example
• When considering errors-on-errors, the model gives greater weight to the more internally consistent 

distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 40%



• The Gamma Variance Model allows for more meaningful inference in contexts where the 
procedures used to assign systematic errors are themselves uncertain.

• The primary advantage of this approach is that it reduces the sensitivity of the fits to outliers and 
data that are incompatible.

• The presence of incompatible data is reflected by inflated error bars on the final results.

• The values of the error-on-error parameters are fixed parameters of the model.

• they can be assigned using expert knowledge
• they can be varied on meaningful ranges to study the dependence of results on different assumptions

Outlook and conclusions

33



Thank you for your attention



Back-up slides 



• Gamma distributions allow to parametrize distributions of positive 
defined variables (like estimates of variances)

• Using Gamma distributions it is possible to profile in close form over 
𝜎;< 

Motivation for the GVM
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• Gamma distributions include the case where the variance is estimate from 
a real dataset of control measurements:

𝑣! =
1

𝑛! − 1
& 𝑢!,# − (𝑢!

$	

• 𝑛 − 1 𝑣!/𝜎%!
$  follows a 𝜒&'($  distribution and 𝑣) a Gamma distribution 

with:
 

𝛼" =
𝑛" − 1
2

𝛽" =
𝑛" − 1
2𝜎#2

$

Motivation for the GVM
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• The likelihood function can be used to construct the profile likelihood ratio 
test statistic:

𝑤𝛍 = −2𝑙𝑛
𝐿 𝛍, 66𝜽

𝐿 8𝛍, 6𝛉

• Use the 𝑝-value:

𝑝𝝁 =	;
Z𝛍,$%&

[
𝑓 𝑤𝛍|𝛍 	𝑑𝑤𝛍

• Include 𝝁 such that:
𝑝𝝁 < 𝛼

Calculation of confidence intervals
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𝑤𝛍 𝑤𝛍∗ = 𝑤𝛍
𝑀
𝐸[𝑤]

𝑤~	𝜒=< + 𝒪 𝒏>?

𝑤∗~𝜒=< + 𝒪 𝒏><

• Modify the likelihood ratio 𝑤 directly so that its distribution is closer to the 
asymptotic form:
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Calculation of confidence intervals

To compute confidence intervals, rescale 
the results obtained with 
Standard methods, such as the Hessian 
method, by 𝑴

𝑬[𝒘]
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GOAL: 
• Construct a simplified toy model to test the implementations of errors-on-errors in a real PDF fit 
• Choose a simple process that allows an easy and fast implementation.

𝑑 ]𝜎
𝑑𝑐𝑜𝑠𝜃

𝑑𝜎88
𝑑𝑥9𝑑𝑥)𝑑𝑐𝑜𝑠𝜃

= g x9 g(x))
𝑑 ]𝜎

𝑑𝑐𝑜𝑠𝜃

Use this to compute differential 
observables of the 𝑡 ̅𝑡 system.

Simplified Model (no real data)

𝒈𝒈 → 𝒕𝒕̅	 LO cross section:
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• The gluon PDF is parametrized as follow

•  𝑔 𝑥 = 𝐶𝑥% 1 − 𝑥 &

• ,𝐴 = −0.85
𝐵 = 6

• 𝐶 ∶ ∫'
(𝑔 𝑥 𝑑𝑥 = 1/2

• We are assuming that this is the gluon PDF shape at 𝑄& close to 𝑡 ̅𝑡 production scale.

Simplified Model

• The aim of the exercise is to fit the gluon PDF, using fictious data points. 
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Simplified Model – Outlier Example

1. Compute the predicted cross-section value in each 
bin, using the chosen PDF parameter values.

2. Generate Gaussian data points around the 
predicted values.

3. Shift the last data point at high |𝑝+| to simulate 
the presence of an outlier.

4. The uncertainties are made by a statistic and 
systematic component of equal sizes

5. Assume the systematic component is itself 
uncertain

To fit the Gluon PDF I will use the |𝑝+| differential cross-section (Other cross-sections could have been used as-
well)  
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Simplified Model – Outlier Example
• When considering errors-on-errors, the bias introduced by the outlier is reduced.
• The confidence interval is adjusted to reflect the increased uncertainty in the region affected by the 

outlier.
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the set of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements and the fit result

Errors-on-errors: 0%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the set of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements and the fit result

Errors-on-errors: 10%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the set of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements and the fit result

Errors-on-errors: 20%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the set of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements and the fit result

Errors-on-errors: 30%
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Realistic fit example (from PDF fitting)
• As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal 

compatibility

• The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies 
within the measurements and the fit result

Errors-on-errors: 40%


