Pythia Week 30/04/24

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Uncertain systematics

Enzo Canonero Glen Cowan

Motivation

- 1) Some systematic uncertainties can be well estimated:
 - Related to stat. error of control measurements
 - Related to size of MC event sample

- 2) But they can also be *quite uncertain*:
 - Theory systematics
 - Two points systematics

- **Goal:** Show how uncertain systematics can be implemented in a fit.
- **Non-trivial consequences!**

- Suppose measurements y have a probability density $P(y|\mu, \theta)$
 - μ = Parameters of interest (E.g., Pythia parameters)
 - θ = Nuisance parameters (Systematic effects)

 $\mathsf{E}[\mathbf{y}] = f(\boldsymbol{\mu}) + \sum \theta_i$

Formulation of the problem

- Suppose measurements y have a probability density $P(y|\mu, \theta)$
 - μ = Parameters of interest (E.g., Pythia parameters)
 - θ = Nuisance parameters (Systematic effects)
- Nuisance parameters are used to model systematic effects and are constrained by auxiliary measurements u
- The *u*s are assumed to be independently Gaussian distributed

Can be a real measurement or just our best guess based on theoretical reasons

$$- E[\mathbf{y}] = f(\mathbf{\mu}) + \sum \theta_i$$

Formulation of the problem

- Suppose measurements y have a probability density $P(y|\mu, \theta)$
 - μ = Parameters of interest (E.g., Pythia parameters)
 - θ = Nuisance parameters (Systematic effects)
- Nuisance parameters are used to model systematic effects and are constrained by auxiliary measurements *u*
- The *u*s are assumed to be independently Gaussian distributed
- The resulting Likelihood is:

Can be a real measurement or just our best guess based on theoretical reasons

$$L(\boldsymbol{\mu}, \boldsymbol{\theta}) = P(\boldsymbol{y}, \boldsymbol{u} | \boldsymbol{\mu}, \boldsymbol{\theta}) = P(\boldsymbol{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_{i} \frac{1}{\sqrt{2\pi}\sigma_{u_i}} e^{-(\boldsymbol{u}_i - \theta_i)^2/2\sigma_{u_i}^2}$$

 $\mathsf{E}[\mathbf{y}] = f(\boldsymbol{\mu}) + \sum \theta_i$

Formulation of the problem

Can be a real measurement or just our best guess based on theoretical reasons

• So, if the likelihood is

$$L(\boldsymbol{\mu}, \boldsymbol{\theta}) = P(\boldsymbol{y}, \boldsymbol{u} | \boldsymbol{\mu}, \boldsymbol{\theta}) = P(\boldsymbol{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_{i} \frac{1}{\sqrt{2\pi}\sigma_{u_i}} e^{-(\boldsymbol{u}_i - \theta_i)^2/2\sigma_{u_i}^2}$$

• The resulting log Likelihood will be:

$$\log L(\boldsymbol{\mu}, \boldsymbol{\theta}) = \log P(\boldsymbol{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) - \sum \frac{(\boldsymbol{u}_i - \boldsymbol{\theta}_i)^2}{2\sigma_{\boldsymbol{u}_i}^2}$$

Let systematic errors be potentially uncertain!

Gamma distribution

To implement "errors-on-errors" suppose the systematic variances $\sigma_{u_i}^2$ are *adjustable parameters*, and their best estimates v_i are gamma distributed:

$$v \sim \frac{\beta^{\alpha}}{\Gamma(\alpha)} v^{\alpha-1} e^{-\beta v}$$

$$\alpha = \frac{1}{4\varepsilon_i^2} \qquad \beta = \frac{1}{4\varepsilon_i^2 \sigma_{u_i}^2}$$

- $\sigma_{u_i}^2$ Expectation value of v_i
- ε_i : relative error on σ_{u_i} : "Error on error"*

**ɛ* used to be *r* in previous references

• The likelihood is modified as follows:

$$L(\boldsymbol{\mu},\boldsymbol{\theta},\boldsymbol{\sigma_{u_i}^2}) = P(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{\theta}) \times \prod_{i} \frac{1}{\sqrt{2\pi}\sigma_{u_i}} e^{-(u_i - \theta_i)^2/2\sigma_{u_i}^2} \times \frac{\boldsymbol{\beta_i^{\alpha_i}}}{\boldsymbol{\Gamma(\alpha_i)}} \boldsymbol{v_i^{\alpha_i - 1}} e^{-\boldsymbol{\beta_i v_i}}$$

• One can profile over $\sigma_{u_i}^2$ in closed form:

$$\log L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = \log P(\boldsymbol{y}|\boldsymbol{\mu}, \boldsymbol{\theta}) - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2\varepsilon_i^2} \right) \log \left(1 + 2\varepsilon_i^2 \frac{(\boldsymbol{u}_i - \boldsymbol{\theta}_i)^2}{\boldsymbol{v}_i} \right)$$

• The likelihood is modified as follows:

$$L(\boldsymbol{\mu}, \boldsymbol{\theta}, \boldsymbol{\sigma_{u_i}^2}) = P(\boldsymbol{y}|\boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_{i} \frac{1}{\sqrt{2\pi}\sigma_{u_i}} e^{-(u_i - \theta_i)^2/2\sigma_{u_i}^2} \times \frac{\boldsymbol{\beta_i^{\alpha_i}}}{\boldsymbol{\Gamma(\alpha_i)}} \boldsymbol{v_i^{\alpha_i - 1}} e^{-\boldsymbol{\beta_i v_i}}$$

• One can profile over $\sigma_{u_i}^2$ in closed form:

$$\log L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = \log P(\boldsymbol{y}|\boldsymbol{\mu}, \boldsymbol{\theta}) - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2\varepsilon_i^2} \right) \log \left(1 + 2\varepsilon_i^2 \frac{(\boldsymbol{u}_i - \boldsymbol{\theta}_i)^2}{\boldsymbol{v}_i} \right)$$

• Profiling means computing

$$L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = L\left(\boldsymbol{\mu}, \boldsymbol{\theta}, \widehat{\boldsymbol{\sigma}_{\boldsymbol{u}_i}^2}\right), \qquad \qquad \widehat{\boldsymbol{\sigma}_{\boldsymbol{u}_i}^2} = \operatorname{argmax}_{\sigma_{\boldsymbol{u}_i}^2}\left(L\left(\boldsymbol{\mu}, \boldsymbol{\theta}, \boldsymbol{\sigma}_{\boldsymbol{u}_i}^2\right)\right)$$

• The original quadratic terms in the log likelihood replaced by a logarithmic terms:

$$\sum_{i} \frac{(u_i - \theta_i)^2}{2\sigma_{u_i}^2} \longrightarrow \sum_{i} \frac{1}{2} \left(1 + \frac{1}{2\varepsilon_i^2}\right) \log\left(1 + 2\varepsilon_i^2 \frac{(u_i - \theta_i)^2}{v_i}\right)$$

• The original quadratic terms in the log likelihood replaced by a logarithmic terms:

$$\sum_{i} \frac{(u_i - \theta_i)^2}{2\sigma_{u_i}^2} \longrightarrow \sum_{i} \frac{1}{2} \left(1 + \frac{1}{2\varepsilon_i^2}\right) \log\left(1 + 2\varepsilon_i^2 \frac{(u_i - \theta_i)^2}{v_i}\right)$$

• Equivalent to switch from Gaussian constraints to Student's t constraints for systematics:

Suppose we want to average 4 measurements all with statistical and syst errors equal to 1.
Also assume they all have equal errors-on-errors ε (auxiliary measurements set to zero):

$$\log L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = -\frac{1}{2} \sum_{i} \frac{(y_i - \mu - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2\boldsymbol{\varepsilon}_i^2}\right) \log\left(1 + 2\boldsymbol{\varepsilon}_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2}\right)$$

Measurements internally compatible

Suppose we want to average 4 measurements all with statistical and syst errors equal to 1.
Also assume they all have equal errors-on-errors ε (auxiliary measurements set to zero):

$$\log L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = -\frac{1}{2} \sum_i \frac{(y_i - \mu - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_i \left(1 + \frac{1}{2\boldsymbol{\varepsilon}_i^2}\right) \log \left(1 + 2\boldsymbol{\varepsilon}_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2}\right)$$

Measurements internally compatible

Suppose we want to average 4 measurements all with statistical and syst errors equal to 1.
Also assume they all have equal errors-on-errors ε (auxiliary measurements set to zero):

$$\log L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = -\frac{1}{2} \sum_{i} \frac{(y_i - \mu - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2\boldsymbol{\varepsilon}_i^2}\right) \log\left(1 + 2\boldsymbol{\varepsilon}_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2}\right)$$

24

- 1. The estimate of the mean does not change when we increase ε
- 2. The size of the confidence interval for the mean only slightly increases, reflecting the extra degree of uncertainty introduced by errors-on-errors
- 3. If data are internally compatible results are only slightly modified

- Suppose one of the measurements is an outlier
- If data are internally incompatible important changes can be observed

- Suppose one of the measurements is an outlier
- If data are internally incompatible important changes can be observed

- Suppose one of the measurements is an outlier
- If data are internally incompatible important changes can be observed

- 1. With increasing ε , the estimate of mean is pulled less strongly by the outlier
- 2. The error bar grows more significantly: the GVM treats internal incompatibility as an additional source of uncertainty
- 3. The model is sensitive to internal compatibility of the data

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Goal: fit the parameters of a complicated non-linear function using a differential distribution. (a differential cross-section from a PDF fit example)

$$\log L_P(A, B, \boldsymbol{\theta}) = -\frac{1}{2} \sum_{i} \frac{(y_i - \boldsymbol{f}(A, B) - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2\boldsymbol{\varepsilon}_i^2}\right) \log\left(1 + 2\boldsymbol{\varepsilon}_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2}\right)$$

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 0%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 10%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 20%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 30%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 40%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 50%

- 1. Consider two measurements of the same distribution, analogous to results from two separate experiments.
- 2. Both distributions are subject to a normalization uncertainty, which is assumed to be itself uncertain.

ROYAL HOLLOWAY

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 0%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 10%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 20%

ROYAL HOLLOWAY

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 30%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 40%

- The Gamma Variance Model allows for more meaningful inference in contexts where the procedures used to assign systematic errors are themselves uncertain.
- The primary advantage of this approach is that it reduces the sensitivity of the fits to outliers and data that are incompatible.
- The presence of incompatible data is reflected by inflated error bars on the final results.
- The values of the error-on-error parameters are fixed parameters of the model.
 - they can be assigned using expert knowledge
 - they can be varied on meaningful ranges to study the dependence of results on different assumptions

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Thank you for your attention

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Back-up slides

- Gamma distributions allow to parametrize distributions of positive defined variables (like estimates of variances)
- Using Gamma distributions it is possible to profile in close form over σ_i^2

Motivation for the GVM

• Gamma distributions include the case where the variance is estimate from a real dataset of control measurements:

$$v_i = \frac{1}{n_i - 1} \sum \left(u_{i,j} - \overline{u_i} \right)^2$$

• $(n-1)v_i/\sigma_{u_i}^2$ follows a χ_{n-1}^2 distribution and v_i a Gamma distribution with:

$$\alpha_i = \frac{n_i - 1}{2}$$
$$\beta_i = \frac{n_i - 1}{2\sigma_{u_i}^2}$$

• The likelihood function can be used to construct the profile likelihood ratio test statistic:

$$w_{\mu} = -2ln \frac{L\left(\mu, \widehat{\theta}\right)}{L\left(\widehat{\mu}, \ \widehat{\theta}\right)}$$

• Use the *p*-value:

$$p_{\boldsymbol{\mu}} = \int_{w_{\boldsymbol{\mu},obs}}^{\infty} f(w_{\boldsymbol{\mu}}|\boldsymbol{\mu}) \, dw_{\boldsymbol{\mu}}$$

• Include μ such that:

Calculation of confidence intervals

• Modify the likelihood ratio w directly so that its distribution is closer to the asymptotic form:

$$w_{\mu} \longrightarrow w_{\mu}^* = w_{\mu} \frac{M}{E[w]}$$

To compute confidence intervals, rescale the results obtained with Standard methods, such as the Hessian method, by $\frac{M}{E[w]}$

$$w \sim \chi_M^2 + \mathcal{O}(\mathbf{n}^{-1})$$
$$w^* \sim \chi_M^2 + \mathcal{O}(\mathbf{n}^{-2})$$

Simplified Model (no real data)

- Construct a simplified toy model to test the implementations of errors-on-errors in a real PDF fit
- Choose a simple process that allows an easy and fast implementation.

Simplified Model

- The aim of the exercise is to fit the gluon PDF, using fictious data points.
- The gluon PDF is parametrized as follow
 - $g(x) = C x^A (1-x)^B$

• $\begin{cases} A = -0.85 \\ B = 6 \end{cases}$

•
$$C: \int_0^1 g(x) dx = 1/2$$

• We are assuming that this is the gluon PDF shape at Q^2 close to $t\bar{t}$ production scale.

Simplified Model – Outlier Example

To fit the Gluon PDF I will use the $|p_T|$ differential cross-section (Other cross-sections could have been used as-well)

- 1. Compute the predicted cross-section value in each bin, using the chosen PDF parameter values.
- 2. Generate Gaussian data points around the predicted values.
- 3. Shift the last data point at high $|p_T|$ to simulate the presence of an outlier.
- 4. The uncertainties are made by a statistic and systematic component of equal sizes
- 5. Assume the systematic component is itself uncertain

Simplified Model – Outlier Example

- When considering errors-on-errors, the bias introduced by the outlier is reduced.
- The confidence interval is adjusted to reflect the increased uncertainty in the region affected by the outlier.

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 0%

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 10%

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 20%

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 30%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 40%

