Pythia Week 30/04/24

ROYAL HOLLOWAY VERSITY OF LONDON

Uncertain systematics

Enzo Canonero Glen Cowan

Motivation

1) Some systematic uncertainties can be well estimated:

- **Related to stat. error of control measurements**
- **Related to size of MC event sample**
- 2) But they can also be *quite uncertain*:
	- **Theory systematics**
	- **Two points systematics**
	- *…*

- Suppose measurements y have a probability density $P(y|\mu, \theta)$
	- μ = Parameters of interest (E.g., Pythia parameters)
	- θ = Nuisance parameters (Systematic effects)

 $E[y] = f(\mu) + \sum \theta_i$

Formulation of the problem

- Suppose measurements y have a probability density $P(y|\mu, \theta)$
	- μ = Parameters of interest (E.g., Pythia parameters)
	- \cdot θ = Nuisance parameters (Systematic effects)
- Nuisance parameters are used to model systematic effects and are constrained by auxiliary measurements \boldsymbol{u}
- The *u*s are assumed to be independently Gaussian distributed

Can be a real measurement or just our best guess based on theoretical reasons

$$
- \mathsf{E}[\mathbf{y}] = f(\boldsymbol{\mu}) + \sum \theta_i
$$

Formulation of the problem

- Suppose measurements y have a probability density $P(y|\mu, \theta)$
	- μ = Parameters of interest (E.g., Pythia parameters)
	- \cdot θ = Nuisance parameters (Systematic effects)
- Nuisance parameters are used to model systematic effects and are constrained by auxiliary measurements \boldsymbol{u}
- The *u*s are assumed to be independently Gaussian distributed
- The resulting Likelihood is:

Can be a real measurement or just our best guess based on theoretical reasons

$$
L(\boldsymbol{\mu}, \boldsymbol{\theta}) = P(\mathbf{y}, \boldsymbol{u} | \boldsymbol{\mu}, \boldsymbol{\theta}) = P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_i \frac{1}{\sqrt{2\pi} \sigma_{u_i}} e^{-(u_i - \theta_i)^2 / 2\sigma_{u_i}^2}
$$

 $E[y] = f(\mu) + \sum \theta_i$

Formulation of the problem

Can be a real measurement or just our best guess based on theoretical reasons

• So, if the likelihood is

$$
L(\boldsymbol{\mu}, \boldsymbol{\theta}) = P(\mathbf{y}, \boldsymbol{u} | \boldsymbol{\mu}, \boldsymbol{\theta}) = P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_i \frac{1}{\sqrt{2\pi} \sigma_{u_i}} e^{-(u_i - \theta_i)^2 / 2\sigma_{u_i}^2}
$$

• The resulting log Likelihood will be:

$$
\log L(\boldsymbol{\mu}, \boldsymbol{\theta}) = \log P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) - \sum \frac{(\boldsymbol{u}_i - \boldsymbol{\theta}_i)^2}{2 \sigma_{u_i}^2}
$$

Let systematic errors be potentially uncertain!

Gamma distribution

To implement "errors-on-errors" suppose the systematic variances $\sigma_{u_i}^2$ are *adjustable parameters*, and their best estimates v_i are gamma distributed:

$$
v \sim \frac{\beta^{\alpha}}{\Gamma(\alpha)} v^{\alpha-1} e^{-\beta v}
$$

$$
\alpha = \frac{1}{4\varepsilon_i^2} \qquad \beta = \frac{1}{4\varepsilon_i^2 \sigma_{u_i}^2}
$$

- $\sigma_{u_i}^2$ Expectation value of v_i
- ε_i: relative error on σ_{u_i: "Error on error"*}

 $*$ used to be r in previous references

• The likelihood is modified as follows:

$$
L(\boldsymbol{\mu}, \boldsymbol{\theta}, \sigma_{u_i}^2) = P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_i \frac{1}{\sqrt{2\pi} \sigma_{u_i}} e^{-(u_i - \theta_i)^2/2\sigma_{u_i}^2} \times \frac{\beta_i^{\alpha_i}}{\Gamma(\alpha_i)} v_i^{\alpha_i - 1} e^{-\beta_i v_i}
$$

• One can profile over $\sigma_{u_i}^2$ in closed form:

$$
\log L_{P}(\boldsymbol{\mu}, \boldsymbol{\theta}) = \log P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2 \varepsilon_{i}^{2}} \right) \log \left(1 + 2 \varepsilon_{i}^{2} \frac{(u_{i} - \theta_{i})^{2}}{v_{i}} \right)
$$

• The likelihood is modified as follows:

$$
L(\boldsymbol{\mu}, \boldsymbol{\theta}, \sigma_{u_i}^2) = P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) \times \prod_i \frac{1}{\sqrt{2\pi} \sigma_{u_i}} e^{-(u_i - \theta_i)^2/2\sigma_{u_i}^2} \times \frac{\beta_i^{\alpha_i}}{\Gamma(\alpha_i)} v_i^{\alpha_i - 1} e^{-\beta_i v_i}
$$

• One can profile over $\sigma_{u_i}^2$ in closed form:

$$
\log L_{P}(\boldsymbol{\mu}, \boldsymbol{\theta}) = \log P(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\theta}) - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2 \varepsilon_{i}^{2}} \right) \log \left(1 + 2 \varepsilon_{i}^{2} \frac{(u_{i} - \theta_{i})^{2}}{v_{i}} \right)
$$

• Profiling means computing

$$
L_P(\boldsymbol{\mu}, \boldsymbol{\theta}) = L(\boldsymbol{\mu}, \boldsymbol{\theta}, \widehat{\sigma_{u_i}^2}), \qquad \widehat{\sigma_{u_i}^2} = argmax_{\sigma_{u_i}^2} (L(\boldsymbol{\mu}, \boldsymbol{\theta}, \sigma_{u_i}^2))
$$

• The original **quadratic terms** in the log likelihood replaced by a **logarithmic terms:**

$$
\sum_{i} \frac{(u_i - \theta_i)^2}{2\sigma_{u_i}^2} \longrightarrow \sum_{i} \frac{1}{2} \left(1 + \frac{1}{2\varepsilon_i^2}\right) \log\left(1 + 2\varepsilon_i^2 \frac{(u_i - \theta_i)^2}{v_i}\right)
$$

• The original **quadratic terms** in the log likelihood replaced by a **logarithmic terms:**

$$
\sum_{i} \frac{(u_i - \theta_i)^2}{2\sigma_{u_i}^2} \longrightarrow \sum_{i} \frac{1}{2} \left(1 + \frac{1}{2\varepsilon_i^2}\right) \log\left(1 + 2\varepsilon_i^2 \frac{(u_i - \theta_i)^2}{v_i}\right)
$$

• Equivalent to switch from **Gaussian constraints** to **Student's t constraints** for systematics:

• Suppose we want to average 4 measurements all with **statistical** and **syst errors** equal to **1**. Also assume they all have equal *errors-on-errors* ε (auxiliary measurements set to zero):

$$
\log L_p(\boldsymbol{\mu}, \boldsymbol{\theta}) = -\frac{1}{2} \sum_i \frac{(y_i - \mu - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_i \left(1 + \frac{1}{2\varepsilon_i^2} \right) \log \left(1 + 2\varepsilon_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2} \right)
$$

• Suppose we want to average 4 measurements all with **statistical** and **syst errors** equal to **1**. Also assume they all have equal *errors-on-errors* ε (auxiliary measurements set to zero):

$$
\log L_{P}(\boldsymbol{\mu}, \boldsymbol{\theta}) = -\frac{1}{2} \sum_{i} \frac{(y_{i} - \mu - \theta_{i})^{2}}{\sigma_{y_{i}}^{2}} - \frac{1}{2} \sum_{i} \left(1 + \frac{1}{2 \varepsilon_{i}^{2}} \right) \log \left(1 + 2 \varepsilon_{i}^{2} \frac{\theta_{i}^{2}}{\sigma_{u_{i}}^{2}} \right)
$$

• Suppose we want to average 4 measurements all with **statistical** and **syst errors** equal to **1**. Also assume they all have equal *errors-on-errors* ε (auxiliary measurements set to zero):

$$
\log L_p(\boldsymbol{\mu}, \boldsymbol{\theta}) = -\frac{1}{2} \sum_i \frac{(y_i - \mu - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_i \left(1 + \frac{1}{2\varepsilon_i^2} \right) \log \left(1 + 2\varepsilon_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2} \right)
$$

- 1. The estimate of the mean does not change when we increase ε
- 2. The size of the confidence interval for the mean only slightly increases, reflecting the extra degree of uncertainty introduced by errors-on-errors
- 3. If data are internally compatible results are only slightly modified

- Suppose one of the measurements is an outlier
- If data are internally incompatible important changes can be observed

- Suppose one of the measurements is an outlier
- If data are internally incompatible important changes can be observed

- Suppose one of the measurements is an outlier
- If data are internally incompatible important changes can be observed

- 1. With increasing ε , the estimate of mean is pulled less strongly by the outlier
- 2. The error bar grows more significantly: the GVM treats internal incompatibility as an additional source of uncertainty
- 3. The model is sensitive to internal compatibility of the data

ROYAL HOLLOWAY

Goal: fit the parameters of a complicated non-linear function using a differential distribution. (a differential cross-section from a PDF fit example)

$$
\log L_p(A, B, \theta) = -\frac{1}{2} \sum_i \frac{(y_i - f(A, B) - \theta_i)^2}{\sigma_{y_i}^2} - \frac{1}{2} \sum_i \left(1 + \frac{1}{2\varepsilon_i^2}\right) \log \left(1 + 2\varepsilon_i^2 \frac{\theta_i^2}{\sigma_{u_i}^2}\right)
$$

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 0%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 10%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 20%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 30%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 40%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements

Errors-on-errors: 50%

- 1. Consider two measurements of the same distribution, analogous to results from two separate experiments.
- 2. Both distributions are subject to a normalization uncertainty, which is assumed to be itself uncertain.

ROYAL HOLLOWAY

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 0%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 10%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 20%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 30%

- When considering errors-on-errors, the model gives greater weight to the more internally consistent distribution in the fit.
- The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 40%

- The Gamma Variance Model allows for more meaningful inference in contexts where the procedures used to assign systematic errors are themselves uncertain.
- The primary advantage of this approach is that it reduces the sensitivity of the fits to outliers and data that are incompatible.
- The presence of incompatible data is reflected by inflated error bars on the final results.
- The values of the error-on-error parameters are fixed parameters of the model.
	- they can be assigned using expert knowledge
	- they can be varied on meaningful ranges to study the dependence of results on different assumptions

ROYAL HOLLOWAY IVERSITY OF LONDON

Thank you for your attention

ROYAL
HOLLOWAY **UNIVERSITY**
OF LONDON

Back-up slides

- Gamma distributions allow to parametrize distributions of positive defined variables (like estimates of variances)
- Using Gamma distributions it is possible to profile in close form over σ_i^2

Motivation for the GVM

• Gamma distributions include the case where the variance is estimate from a real dataset of control measurements:

$$
v_i = \frac{1}{n_i - 1} \sum (u_{i,j} - \overline{u}_i)^2
$$

• $(n-1)v_i/\sigma_{u_i}^2$ follows a χ_{n-1}^2 distribution and v_i a Gamma distribution with:

$$
\alpha_i = \frac{n_i - 1}{2}
$$

$$
\beta_i = \frac{n_i - 1}{2\sigma_{u_i}^2}
$$

• The likelihood function can be used to construct the profile likelihood ratio test statistic:

$$
w_{\mu} = -2\ln \frac{L\left(\mu, \widehat{\widehat{\boldsymbol{\theta}}}\right)}{L\left(\widehat{\mu}, \widehat{\boldsymbol{\theta}}\right)}
$$

• Use the p -value:

$$
p_{\mu} = \int_{w_{\mu,obs}}^{\infty} f(w_{\mu}|\mu) dw_{\mu}
$$

• Include μ such that:

Calculation of confidence intervals

• Modify the likelihood ratio w directly so that its distribution is closer to the asymptotic form:

$$
w_{\mu} \longrightarrow w_{\mu}^{*} = w_{\mu} \frac{M}{E[w]}
$$

To compute confidence intervals, rescale the results obtained with Standard methods, such as the Hessian method, by $\frac{M}{E[w]}$

$$
w \sim \chi_M^2 + \mathcal{O}(n^{-1})
$$

$$
w^* \sim \chi_M^2 + \mathcal{O}(n^{-2})
$$

Simplified Model (no real data)

GOAL:

- Construct a simplified toy model to test the implementations of errors-on-errors in a real PDF fit
- Choose a simple process that allows an easy and fast implementation.

Simplified Model

- The aim of the exercise is to fit the gluon PDF, using fictious data points.
- The gluon PDF is parametrized as follow
	- $q(x) = Cx^A(1-x)^B$

 \bullet } $A = -0.85$ $B = 6$

• $C : \int_0$ $\mathbf{1}$ $g(x)dx = 1/2$

• We are assuming that this is the gluon PDF shape at Q^2 close to $t\bar{t}$ production scale.

Simplified Model – Outlier Example

To fit the Gluon PDF I will use the $|p_T|$ differential cross-section (Other cross-sections could have been used aswell)

- 1. Compute the predicted cross-section value in each bin, using the chosen PDF parameter values.
- 2. Generate Gaussian data points around the predicted values.
- 3. Shift the last data point at high $|p_T|$ to simulate the presence of an outlier.
- 4. The uncertainties are made by a statistic and systematic component of equal sizes
- 5. Assume the systematic component is itself uncertain

Simplified Model – Outlier Example

- When considering errors-on-errors, the bias introduced by the outlier is reduced.
- The confidence interval is adjusted to reflect the increased uncertainty in the region affected by the outlier.

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 0%

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 10%

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 20%

- As errors-on-errors increase, the model fits the set of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 30%

- As errors-on-errors increase, the model fits the subset of data that have the highest degree of internal compatibility
- The confidence interval is adjusted to reflect the degree of uncertainty arising from inconsistencies within the measurements and the fit result

Errors-on-errors: 40%

