
Rivet/YODA status

Christian Gütschow

Pythia Week, Oxford

30 April 2024

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Introduction

➜ Rivet4 and YODA2 released!
[rivet.hepforge.org] [yoda.hepforge.org]

➜ YODA: lightweight and general purpose library
for binned statistical data analysis

➜ first released in 2013,
now undergone a ground-up re-design

➜ see also detailed write-ups for YODA [arxiv:2312.15070] and Rivet [arxiv:2404.15984] respectively

➜ Rivet now requires C++17, drops support for HepMC2 and Python2

➜ some syntax changes to be expected, cf. [migration guide]

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 2/17

https://rivet.hepforge.org/
https://yoda.hepforge.org/
https://arxiv.org/abs/2312.15070
https://arxiv.org/abs/2404.15984
https://gitlab.com/hepcedar/rivet/-/blob/release-4-0-x/doc/tutorials/mig3to4.md

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Experience from YODA1

➜ design goals partially established already at the time of YODA1 release in 2013,
but structural issues motivated a ground-up rewrite

➜ limited data-object dimensionality and only continuous-valued axes supported

➜ inability to store arbitrary data-types in binnings

➜ correct but limited treatment of overflow bins

➜ no unified scheme for local and global bin indexing in multiple dimensions

➜ internal code duplication to support C++ and Python APIs for several different
dimensionalities and binned-content types

➜ mismatching of the “inert" scatter datatype from e.g. HepData to
the binned “live” objects from MC runs

➜ limited and inconvenient implementation of uncertainty breakdowns
and correlations on scatter types

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 3/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Bin partitioning

➜ new Axis class templated on edge type

➜ (classic) continuous axis triggered
by std::is_floating_point trait

➜ N bins defined by N + 1 edges,
plus under- and overflow bin

➜ active uses of IEEE 754 FP standard; infinity binning:
bin edges: -inf -1.0 -0.5 0.0 0.5 1.0 +inf
bin widths: +inf 0.5 0.5 0.5 0.5 +inf

−∞ +∞

−∞

+∞

(0, 0) (1, 0)

(0, 2) (3, 2)

(3, 3)

masked

➜ (new) discrete axis for all other types

➜ bins along discrete axis only have their edge label

➜ N bins defined by N edges, plus otherflow bin

➜ useful for multiplicities, cutflows, . . .

➜ Binning class permits slicing and marginalisaing across global fill-space
and translates local indices into a global index and vice versa

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 4/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Bin partitioning

➜ new Axis class templated on edge type

➜ (classic) continuous axis triggered
by std::is_floating_point trait

➜ N bins defined by N + 1 edges,
plus under- and overflow bin

➜ active uses of IEEE 754 FP standard; infinity binning:
bin edges: -inf -1.0 -0.5 0.0 0.5 1.0 +inf
bin widths: +inf 0.5 0.5 0.5 0.5 +inf

−∞ +∞

−∞

+∞

(0, 0) (1, 0)

(0, 2) (3, 2)

(3, 3)

masked

➜ (new) discrete axis for all other types

➜ bins along discrete axis only have their edge label

➜ N bins defined by N edges, plus otherflow bin

➜ useful for multiplicities, cutflows, . . .

➜ Binning class permits slicing and marginalisaing across global fill-space
and translates local indices into a global index and vice versa

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 4/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

A new base class for all binned quantities

➜ new BinnedStorage class can hold arbitrary bin-content types

➜ supports index-based bin(i) and coordinate-based binAt(x) lookups

➜ supports bin masking (mask(i), maskAt(x)) to emulate “gaps" (in place of bin erasure)

BinnedStorage

Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType> Binning

.bins()

.numBins()

.mergeBins()

references

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 5/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Distinguishing live and inert objects

BinnedStorage

FillableStorage

DbnStorage

BinnedDbn

BinnedHisto

BinnedProfile

EstimateStorage

BinnedEstimate

binning backend

introduces fill adapter

content specialisation,
inherits from AnalysisObject

dimensional specialisation

➜ new FillableStorage class inherits from BinnedStorage

➜ introduces a fill adapter that handles the bin-content manipulation for each fill call

➜ fill function returns bin position (global index) or -1 if a coordinate was nan

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 6/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Type and dimensionality reductions

➜ live BinnedDbn objects reduce to
inert BinnedEstimate objects

➜ slice along axis n using
mkHistos<n>() to yield
a vector<Histo1D>
from Histo2D etc.

➜ 0-dimensional variants with live Counter
reducing to Estimate0D

➜ both live and inert types reduce to
Scatter objects for plotting

AnalysisObject

Counter BinnedDbn

Estimate0D BinnedEstimate

ScatterND

➜ all user-facing types inherit from the AnalysisObject base class,
which provides the attribute system to store metadata

➜ all types support global scaling operations; arbitrary transformations (e.g. lambda functions)
can also be applied to all inert data types (estimates, points)

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 7/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Retaining YODA1-style type names

➜ BinnedDbn<FillDim, BinnedAxisT, ...> now default user-facing object
for all live distributions (i.e. histograms and profiles)

➜ BinnedEstimate<BinnedAxisT, ...> now default user-facing object
for all inert types (e.g. HepData measurements)

➜ syntactic sugaring recovers more familiar/convenient type names, e.g.

➜ BinnedHisto<double,int> = BinnedDbn<2,double,int>

➜ BinnedProfile<string> = BinnedDbn<2,string>

➜ Histo2D = HistoND<2> = BinnedHisto<double,double> = BinnedDbn<2,double,double>

➜ Profile1D = ProfileND<1> = BinnedProfile<double> = BinnedDbn<2,double>

➜ Estimate1D = EstimateND<1> = BinnedEstimate<double>

➜ Scatter2D = ScatterND<2>

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 8/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Example: construction and filling

// declaration examples
Histo1D h1; // histogram with 1 continuous axis
Profile2D p1; // profile with 2 continuously binned axes + 1 unbinned axis
HistoND <5> h2; // histogram with 5 continuous axes

// constructor examples
Histo1D h3(10, 0, 100); // 10 bins between 0 and 100
const std::vector <double > edges = {0, 10, 20, 30, 40, 50};
Histo1D h4(edges);
BinnedHisto <int , std::string > h5({ 1, 2, 3 }, { "A", "B", "C" });

// fill examples
Histo1D h6(5, 0.0, 1.0);
h6.fill (0.2);
Profile1D p2(5, 0.0, 1.0);
p2.fill (0.2, 3.5);

// marginalisation examples
Histo2D h7 = p1.mkHisto (); //< marginalise over unbinned axis
Histo1D h8 = h7.mkMarginalHisto <1 >(); //< marginalise over secomd binned axis
Histo1D h9 = p1.mkMarginalProfile <0>(); //< marginalise over first binned axis

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 9/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Example: looping and indexing

size_t nbinsX = 4, nbinsY = 6;
double lowerX = 0, lowerY = 0;
double upperX = 4, upperY = 6;
Histo2D h2(nbinsX , lowerX , upperX ,

nbinsY , lowerY , upperY);

// loop over bins and fill with increasing weight
double w = 0;
for (auto& b : h2.bins ()) { //< iterators passes through using templated bin wrappers

h2.fill(b.xMid(), b.yMid(), ++w);
}

for (size_t idxY = 0; idxY < h2.numBinsY(true); ++idxY) { //< true includes overflows
for (size_t idxX = 0; idxX < h2.numBinsX(true); ++idxX) { //< true includes overflows

std::cout << "\t(" << idxX << "," << idxY << ")\t=\t";
std::cout << h2.bin(idxX , idxY).sumW ();

}
std::cout << std::endl;

}
std::cout << std::endl;

H2 bins using local indices + under/overflows:
(0,0) = 0 (1,0) = 0 (2,0) = 0 (3,0) = 0 (4,0) = 0 (5,0) = 0
(0,1) = 0 (1,1) = 1 (2,1) = 2 (3,1) = 3 (4,1) = 4 (5,1) = 0
(0,2) = 0 (1,2) = 5 (2,2) = 6 (3,2) = 7 (4,2) = 8 (5,2) = 0
(0,3) = 0 (1,3) = 9 (2,3) = 10 (3,3) = 11 (4,3) = 12 (5,3) = 0
(0,4) = 0 (1,4) = 13 (2,4) = 14 (3,4) = 15 (4,4) = 16 (5,4) = 0
(0,5) = 0 (1,5) = 17 (2,5) = 18 (3,5) = 19 (4,5) = 20 (5,5) = 0
(0,6) = 0 (1,6) = 21 (2,6) = 22 (3,6) = 23 (4,6) = 24 (5,6) = 0
(0,7) = 0 (1,7) = 0 (2,7) = 0 (3,7) = 0 (4,7) = 0 (5,7) = 0

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 10/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA I/O
➜ generalising the existing V2 ASCII format to arbitrary dimensions and

supporting std::string-based edges required a little restructuring:

BEGIN YODA_HISTO1D_V3 /H1D_d
Path: /H1D_d
Title:
Type: Histo1D

Mean: 3.470588e-01
Integral: 1.700000e+01
Edges(A1): [0.000000e+00, 5.000000e-01, 1.000000e+00]
sumW sumW2 sumW(A1) sumW2(A1) numEntries
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.000000e+01 1.000000e+02 1.000000e+00 1.000000e-01 1.000000e+00
7.000000e+00 4.900000e+01 4.900000e+00 3.430000e+00 1.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
END YODA_HISTO1D_V3

BEGIN YODA_BINNEDHISTO <S>_V3 /H1D_s
Path: /H1D_s
Title:
Type: BinnedHisto <s>

Mean: 3.750000e-01
Integral: 8.000000e+00
Edges(A1): ["A"]
sumW sumW2 sumW(A1) sumW2(A1) numEntries
5.000000e+00 2.500000e+01 0.000000e+00 0.000000e+00 1.000000e+00
3.000000e+00 9.000000e+00 3.000000e+00 3.000000e+00 1.000000e+00
END YODA_BINNEDHISTO <S>_V3

➜ already the default on HepData! (old format still available via YODA1 option)

➜ YODA2 reader can still read old ASCII format from YODA1
Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 11/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Plotting

➜ matplotlib-based plotting machinery produces self-consistent Python scripts
allowing for better customisation of plots (no YODA installation required)

10°2

10°1

1

101

102

103

s
(Z

+
N

je
ts
)

[p
b]

Z ! `+`°, dressed level

Data
Model 1
Model 2

0 1 2 3 4 5 6 7
Njets

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
C

/D
at

a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X

1

2

3

4

Y

2D heatmaps in YODA

1

2

3

4

Z

➜ plots drawn from Scatter objects

➜ final abstraction layer to seperate style choices for rendering data from statistical analysis

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 12/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

New Rivet4 major release!

➜ Rivet 4 adopts YODA2 for histogramming backend

➜ all reference data shipped with Rivet has been converted to the new Estimate types

➜ HepData already supports YODA2 by default: writes out BinnedEstimate objects

➜ post-finalize() objects written out in their inert state!

➜ TypeRegister: edge combination of double, int and string pre-registered
for 1D and 2D objects, others can be registered on the fly:

➜ RIVET_REGISTER_TYPE(YODA::BinnedHisto<double,int,string,double>);

➜ RIVET_REGISTER_BINNED_SET(double, double, string, int);

➜ routines adjusted to use discrete binning where appropriate

➜ matplotlib-based plotting machinery now the default script

➜ old script based on LATEX-pstricks still available as rivet-mkhtml-tex

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 13/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Projection streamlining

➜ Clean-up of projection arguments in favour of self-documenting scoped enum classes:
FastJets::Algo::KT ➜ JetAlg::KT
JetAlg::Muons::NONE ➜ JetMuons::NONE
JetAlg::Invisibles::DECAY ➜ JetInvisibles::DECAY

➜ Boolean arguments for treatment of tau/muon decay products
replaced with TauDecaysAs and MuDecaysAs enum classes

➜ DressedLepons renamed LeptonFinder, akin to existing JetFinder and ParticleFinder

➜ old DressedLeptons now alias for vector<DressedLepton>

➜ similarly, ZFinder renamed DileptonFinder

➜ WFinder removed entirely!

➜ significantly improves self-documentation of analysis code, clarifying previously obscure
model-dependent assumptions woven into the measurement data

➜ new closestMatchIndex() metafunction to help identify W candidates, e.g.
const int bestmatch = closestMatchIndex(leptons, pmiss, Kin::mass, 80.4*GeV);

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 14/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

More API updates

➜ smearing of NLO sub-events now generalised to arbitrary dimensions and axis types

➜ originally introduced by Leif in Rivet3 for 1D histograms

➜ Rivet’s custom BinnedHistogram class got replaced with a HistoGroup class
(a FillableStorage with a “group axis" and a BinnedHisto as bin content)

Histo1DGroupPtr _hist; //< Histo1DGroup = HistoGroup <double ,double >
...
book(_hist , { 1.0, 2.0, 3.0, 4.0 });
for (auto& bin : hist ->bins ()) {

book(bin , 1, 1, bin.index ());
}
...
_hist ->fill(val1 , val2);
...
normalize(_hist); // or: normalizeGroup(_hist) if the grouped sumW is to be used
divByGroupWidth(_hist); // divide by bin width along group axis

➜ New interface to HDF5 and HighFive for storing and loading analysis-specific auxiliary data

➜ New (optional) interface to ONNX Runtime as (current) best option for ML preservation

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 15/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Better support for massively parallel applications

➜ YODA2 inheritance structure makes it straightforward to serialize object data

➜ numerical content of AnalysisHandler can be translated into std::vector<double>

➜ contiguous arrays of primitive types lend themselves much better to MPI communication

➜ memory block of data can be loaded back into an AnalysisHandler for
deserialize-ing and finalize-ing

vector<double>vector<double>vector<double>vector<double>vector<double>vector<double> vector<double>
MPI all-reduce

➜ also: reduced I/O load from parsing info files in the initialisation phase

➜ more profiling and optimisations envisaged for the future

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 16/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Summary

➜ histograms are a powerful tool and often taken for granted

➜ a decade after its first release, YODA backend underwent a ground-up redesign

➜ statistical analysis objects generalised to arbitrary dimensions and edge types
along different axes – with the help of modern C++ design patterns

➜ YODA 2.0.0 has been out since before Christmas – check it out: [yoda.hepforge.org]

➜ Rivet 4.0.0 has been out since Feb 29 – check it out: [rivet.hepforge.org]

➜ plans for the future: performance optimisations, alternative YODA-HDF5 output format,
primary particle definition, flavour-sensitive kT clustering . . . stay tuned!

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 17/17

https://yoda.hepforge.org/
https://rivet.hepforge.org/

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Backup

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 18/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Variadic templates and parameter packs
➜ Metaprogramming using C++17 takes care of generalisation to arbitrary dimensions:

#include <iostream >
#include <string >
#include <tuple >
#include <vector >

template <typename ... Args >
class MyHisto {
public:

MyHisto(const std::vector <Args >& ... edges)
: _axes(edges ...) { }

size_t dim() const { return sizeof ...(Args); }

template <size_t I>
void printBinning () const {

if constexpr (I < sizeof ...(Args)) {
std::cout << "Axis" << (I+1) << "has";
std::cout << std::get <I>(_axes).size ();
std::cout << "bins." << std::endl;
printBinning <I+1>();

}
}

void print() const {
std::cout << dim() << "D:" << std::endl;
printBinning <0 >();

}

private:
std::tuple <std::vector <Args >...> _axes;

};

const std::vector <double > dedges {1.0, 2.0, 3.0};
const std::vector <std::string > sedges{"A", "B", "C"};
MyHisto h(dedges , sedges);

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 19/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles I

➜ Differential consistency

➜ unlike list of (weighted) fill counts, histogram is a binned best-estimate of a continuous distribution

➜ crucial to take f (x) ≡ dP/dx notation literally since optimal estimation requires non-uniform binning

➜ Continuous aggregation

➜ histograms need to be “live” objects containing update-able variables

➜ single pass over all events in memory à la numpy or Excel often not feasible in HEP

➜ Weighted statistical moments

➜ weighted statistical moments required to compute the key summary statistics of their bins

➜ a profile also stores the statistical moments of a further unbinned quantity

➜ Integral consistency

➜ ability to project higher- into lower-dimensional binnings without biasing integral quantities

➜ including integrally consistent constructions of binned profiles from higher-dimensional histograms

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 20/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles I

➜ Differential consistency

➜ unlike list of (weighted) fill counts, histogram is a binned best-estimate of a continuous distribution

➜ crucial to take f (x) ≡ dP/dx notation literally since optimal estimation requires non-uniform binning

➜ Continuous aggregation

➜ histograms need to be “live” objects containing update-able variables

➜ single pass over all events in memory à la numpy or Excel often not feasible in HEP

➜ Weighted statistical moments

➜ weighted statistical moments required to compute the key summary statistics of their bins

➜ a profile also stores the statistical moments of a further unbinned quantity

➜ Integral consistency

➜ ability to project higher- into lower-dimensional binnings without biasing integral quantities

➜ including integrally consistent constructions of binned profiles from higher-dimensional histograms

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 20/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles I

➜ Differential consistency

➜ unlike list of (weighted) fill counts, histogram is a binned best-estimate of a continuous distribution

➜ crucial to take f (x) ≡ dP/dx notation literally since optimal estimation requires non-uniform binning

➜ Continuous aggregation

➜ histograms need to be “live” objects containing update-able variables

➜ single pass over all events in memory à la numpy or Excel often not feasible in HEP

➜ Weighted statistical moments

➜ weighted statistical moments required to compute the key summary statistics of their bins

➜ a profile also stores the statistical moments of a further unbinned quantity

➜ Integral consistency

➜ ability to project higher- into lower-dimensional binnings without biasing integral quantities

➜ including integrally consistent constructions of binned profiles from higher-dimensional histograms

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 20/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles I

➜ Differential consistency

➜ unlike list of (weighted) fill counts, histogram is a binned best-estimate of a continuous distribution

➜ crucial to take f (x) ≡ dP/dx notation literally since optimal estimation requires non-uniform binning

➜ Continuous aggregation

➜ histograms need to be “live” objects containing update-able variables

➜ single pass over all events in memory à la numpy or Excel often not feasible in HEP

➜ Weighted statistical moments

➜ weighted statistical moments required to compute the key summary statistics of their bins

➜ a profile also stores the statistical moments of a further unbinned quantity

➜ Integral consistency

➜ ability to project higher- into lower-dimensional binnings without biasing integral quantities

➜ including integrally consistent constructions of binned profiles from higher-dimensional histograms

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 20/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles II

➜ Separation of style from substance

➜ invariance of statistical data while varying plotting style

➜ Separation of binning from bin-content

➜ enables distinction between live (permits further data-taking) and inert classes of data-object,
with the latter being a specific representation as “values and uncertainties”

➜ User friendliness

➜ aim to provide a “clean” programmatic interface expressed in terms of statistical and
data-analytic concepts and hence well-matched to the goals and skill-sets of data scientists

➜ hide the complexity of advanced language features used internally to make high levels
of abstraction possible while enforcing statistical consistency and type-safety

➜ intentionally limited to binned statistical analysis only, with zero library dependencies
for core C++ operation, to assist embedding into applications

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 21/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles II

➜ Separation of style from substance

➜ invariance of statistical data while varying plotting style

➜ Separation of binning from bin-content

➜ enables distinction between live (permits further data-taking) and inert classes of data-object,
with the latter being a specific representation as “values and uncertainties”

➜ User friendliness

➜ aim to provide a “clean” programmatic interface expressed in terms of statistical and
data-analytic concepts and hence well-matched to the goals and skill-sets of data scientists

➜ hide the complexity of advanced language features used internally to make high levels
of abstraction possible while enforcing statistical consistency and type-safety

➜ intentionally limited to binned statistical analysis only, with zero library dependencies
for core C++ operation, to assist embedding into applications

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 21/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

YODA2: Design principles II

➜ Separation of style from substance

➜ invariance of statistical data while varying plotting style

➜ Separation of binning from bin-content

➜ enables distinction between live (permits further data-taking) and inert classes of data-object,
with the latter being a specific representation as “values and uncertainties”

➜ User friendliness

➜ aim to provide a “clean” programmatic interface expressed in terms of statistical and
data-analytic concepts and hence well-matched to the goals and skill-sets of data scientists

➜ hide the complexity of advanced language features used internally to make high levels
of abstraction possible while enforcing statistical consistency and type-safety

➜ intentionally limited to binned statistical analysis only, with zero library dependencies
for core C++ operation, to assist embedding into applications

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 21/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Bin content

➜ Bin wrapper class that links bin content with the local and global binning properties

➜ every bin has a dVol() method (also dLen(), dArea() aliases in 1D and 2D)

➜ access to axis-specific quantities via templated accessor methods

➜ CRTP used to mix in axis-specific method names for first three dimensions

➜ Live content: Dbn

➜ distribution class from YODA1, now generalised to arbitrary dimensions

➜ keeps track of exact first and second order moments (and mixed moments
∑

n wnxnyn)

➜ fill provides fill method accepting next coordinate set, optional weight and optional fill fraction

➜ Inert content: Estimate

➜ a central value with an associated error breakdown

➜ errors encoded as labelled uncertainty pairs corresponding to
{down,up} variations of a nuisance parameter

➜ support for correlated/uncorrelated treatment of different NPs

➜ arithmetic operations respect (un-)correlated error treatment

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 22/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Bin content

➜ Bin wrapper class that links bin content with the local and global binning properties

➜ every bin has a dVol() method (also dLen(), dArea() aliases in 1D and 2D)

➜ access to axis-specific quantities via templated accessor methods

➜ CRTP used to mix in axis-specific method names for first three dimensions

➜ Live content: Dbn

➜ distribution class from YODA1, now generalised to arbitrary dimensions

➜ keeps track of exact first and second order moments (and mixed moments
∑

n wnxnyn)

➜ fill provides fill method accepting next coordinate set, optional weight and optional fill fraction

➜ Inert content: Estimate

➜ a central value with an associated error breakdown

➜ errors encoded as labelled uncertainty pairs corresponding to
{down,up} variations of a nuisance parameter

➜ support for correlated/uncorrelated treatment of different NPs

➜ arithmetic operations respect (un-)correlated error treatment

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 22/17

CHRISTIAN GÜTSCHOW

RIVET/YODA STATUS

Bin content

➜ Bin wrapper class that links bin content with the local and global binning properties

➜ every bin has a dVol() method (also dLen(), dArea() aliases in 1D and 2D)

➜ access to axis-specific quantities via templated accessor methods

➜ CRTP used to mix in axis-specific method names for first three dimensions

➜ Live content: Dbn

➜ distribution class from YODA1, now generalised to arbitrary dimensions

➜ keeps track of exact first and second order moments (and mixed moments
∑

n wnxnyn)

➜ fill provides fill method accepting next coordinate set, optional weight and optional fill fraction

➜ Inert content: Estimate

➜ a central value with an associated error breakdown

➜ errors encoded as labelled uncertainty pairs corresponding to
{down,up} variations of a nuisance parameter

➜ support for correlated/uncorrelated treatment of different NPs

➜ arithmetic operations respect (un-)correlated error treatment

Pythia Week 2024, Oxford, 30 Apr 2024 chris.g@cern.ch 22/17

