
Pythia8 — Colour 
reconnection 
optimisation
Michal Kreps



Starting point
➡ Couple of years back in LHCb we did Pythia8 tuning in which we used 

colour reconnection 
❖ But we have never used it because everything become very slow 

➡ Alex Ward did some measurements and found some hotspots 
➡ Afterwards I looked to code and found lot of small coding issues which 

makes code slow 
➡ This is documentation on what and why I change to make it much faster

2



My measurements
➡ My work is based on main03 example where I change settings based on what Alex did with 

Peter Skands 
➡ Colour reconnection settings are 

 
➡ Profiling is done with 20 events, timing measurements with 5000 events 
➡ Code before modifications runs for 2m27s,  
➡ Profiler: 80% of Pythia8 time in colour reconnection

3



Shared_ptr copies
➡ First issue is that there are many places where copies of shared_ptr are made 
➡ Example is  

 
➡ Problem with this is that it invokes copy constructor and needs locking to 

update reference count

4



Shared_ptr copies
➡ Pass shared_ptr to colour dipole by reference wherever trivially possible  
❖ Test job went from 2m27s to 1m45s 

➡ In few places it is not completely trivial, but can be improved after making 
function arguments const and possibly whole functions const 

➡ Try to avoid work, which is not needed 
❖ checkTimeDilation function with up to 4 dipoles is good example (next slide)

5



Avoid unnecessary work

➡ Get down to 1m30s
6



Operations with map
➡ Calls like formationTimes[dip3->col] are costly as compiler cannot 

be sure whether we modify map or not 
➡ There seems to be lot of time in singleJunction function 

7

Function called in triple loop 

Some checks make more sense 
in that loop to decrease number 
of if statements



Elephant in the room
➡ Lot of time spent getting 

dipole momentum 
➡ Most of the time does not 

change 
➡ Cache where possible 
➡ Significant decrease of 

time spent in the function 
(22% to 4%)

8

Change profiling statistics 
from 20 to 100 events



Profiling after changes

➡ Just colour reconnection
9

up
da

te
Ju

nc
tio

nT
ria

ls(
) singleJunction()



singleJunction function
➡ Called huge number of times and most of the times it just checks whether 

dipoles make sense together 
➡ Move these checks outside to place where function is called 
➡ With little bit of cleverness, most of the checks can be done much fewer 

times 
➡ Overall effect is to decrease time of the test from 70s to 55s

10



Profiler after changes

11



Summary
➡ Handful of trivial changes to make code slightly more friendly to compiler 
➡ Help memory access to pick up few things only if needed 
➡ Couple of if statements optimised to avoid some evaluations 
➡ Partial caching of dipole momentum  
➡ Overall, my test goes from 2m27s to 55s 
➡ Further improvements are likely possible (cache dipole momentum, avoid 

additional work etc) but no trivial place where big gain is easy 
➡ There are probably things reevaluated many times even if they do not 

change

12


