
On Vacuum Transitions and the 
String Landscape

Fernando Quevedo
University of Cambridge/CERN

CERN TH Colloquium
February 14 2024

Recent detailed reviews:
M.Cicoli, J. Conlon, A. Maharana, S. Parameswaran, FQ, I. Zavala 2303.04819 Phys Reports 1059 (2024) 1-155 
L. McAllister, FQ ( Handbook on Quantum Gravity) 2310.20559

Recent work on vacuum transitions:
S. Cespedes, S. de Alwis, F. Muia, FQ 2307.13614, Phys.Rev.D 104 (2021) 2, 026013  2011.13936 also work with V. Pasquarella

https://arxiv.org/abs/2303.04819
https://arxiv.org/abs/2310.20559
https://arxiv.org/abs/2307.13614
https://arxiv.org/abs/2011.13936


‘Standard Model of Cosmology’
𝜦CDM

𝜦: Cosmological constant CDM: Cold dark matter
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vn =

1

Rµ⌫ �
1

2
gµ⌫ R+ ⇤gµ⌫ = 0

⇤ = 0 Minkowski spacetime

⇤ > 0 de Sitter spacetime

⇤ < 0 Anti-de Sitter spacetime

⇤ ' +10�120M4
P lanck

MP lanck =

r
~c
G

' 1019GeV

1

�
= RH

✓
1

m2
� 1

n2

◆
, RH ⇠ 1.097⇥ 107m�1

V = �e2

r0

F =
e2

r20
=

mv2

r0

T =
1

2
mv2 =

1

2

e2

r0

E = T + V = �1

2

e2

r0

E = T + V =
1

2
mv2 � e2

r

F =
e2

r2
=

mv2

r

mvr = n~, n 2 Z

En = � 1

n2
EI , EI =

me4

2~2 ⇠ 13.6eV

1

Rµ⌫ �
1

2
gµ⌫ R+ ⇤gµ⌫ = 0

⇤ = 0 Minkowski spacetime

⇤ > 0 de Sitter spacetime

⇤ < 0 Anti-de Sitter spacetime

⇤ ' +10�120M4
P lanck

MP lanck =

r
~c
G

' 1019GeV

1

�
= RH

✓
1

m2
� 1

n2

◆
, RH ⇠ 1.097⇥ 107m�1

V = �e2

r0

F =
e2

r20
=

mv2

r0

T =
1

2
mv2 =

1

2

e2

r0

E = T + V = �1

2

e2

r0

E = T + V =
1

2
mv2 � e2

r

F =
e2

r2
=

mv2

r

mvr = n~, n 2 Z

En = � 1

n2
EI , EI =

me4

2~2 ⇠ 13.6eV

1

New kind of Matter ≠ quarks, leptons

Dark: Electrically neutral

Cold: v<<c

Gravitationally (weakly?) interactive



Open Problems in Theoretical Cosmology

• Big bang

• Origin of inflation (or alternatives)

• Dark energy 

• Dark matter

• Baryogenesis…

• Lack of underlying theory
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6. Dark Energy

One of the most striking discoveries from the last century was the observational discovery of late-time cosmic
acceleration from the Supernovae type Ia (SN Ia) (311; 312). This discovery represents one of the major puzzles of
modern physics; its cause is generally dubbed dark energy, whose fundamental nature is still a mystery. According to
observations, about 70% of the energy density of the Universe today consists of this unknown dark energy component.
This has also been confirmed by other observations – such as Cosmic Microwave Background (CMB) (313; 1) and
Baryon Acoustic Oscillations (BAO) (314) (see however (315) for a dissenting view).

Dark energy is characterised by the equation of state

wDE = pDE/⇢DE , (193)

where pDE is the pressure and ⇢DE is the energy density; dark energy has a negative pressure with wDE < �1/3.
Present observations suggest that the current energy density of dark energy is ⇢DE,0 ⇠ 10�120M4

Pl, with an equation of
state given today by (1):

wDE,0 = �1.028 ± 0.032 . (194)

The simplest candidate of dark energy, consistent with current data and used in the ⇤CDM cosmological model,
is a pure cosmological constant, ⇤ with wDE = �1. The cosmological constant can arise from the vacuum energy in
particle physics, but the naive theoretical expectation is about 120 orders of magnitude larger than the observed value
(316). To explain the extremely fine-tuned value of the cosmological constant, one may appeal to anthropic arguments
(317; 318), whose recent resurgence is motivated by the string theory landscape (38).

An alternative possibility is that the cosmological constant actually vanishes for reasons yet to be understood,
calling for an alternative mechanism to explain the origin of dark energy. Observations that constrain the value of
wDE today to be close to that of a cosmological constant say relatively little about its time evolution. So we can
consider a situation in which the equation of state of dark energy changes with time, similarly to what happens during
early universe inflation. As scalar fields naturally arise in supergravity and string theory, there are plenty of potential
candidates for dark energy. Indeed, as we will see, many of the ideas discussed in Section ?? to explain cosmic
inflation in the universe from string theory can also be applied to the late-time cosmic acceleration; on the one hand,
as only around a single e-fold of accelerated expansion is needed for Dark Energy, compared to 60 e-folds of inflation,
constructing models of Dark Energy is easier; on the other hand, as Dark Energy is active today, it is constrained more
strongly by our experiments and observations.

We now consider recent developments using these two approaches to explain the current accelerated expansion of
the universe, within the context of string theory and string-inspired constructions.

6.1. Dark Energy as Vacuum Energy
In this subsection we review the Cosmological Constant Problem and the order of magnitude estimates of the

vacuum energy. We will then describe how the string theory multiverse, with eternal inflation to populate it, has the
potential to solve the Cosmological Constant Problem, providing a framework in which the fine-tuning of the vacuum
energy is explained via anthropic arguments. Finally we discuss the main questions that this paradigm leaves open.

6.1.1. The Cosmological Constant Problem
The modern formulation of the Cosmological Constant Problem actually raises two questions (see (316; 319; 320;

321; 322; 323) for some reviews and (324) for a historical account):

• Why is the Cosmological Constant so small but non-zero?

• Why the cosmic coincidence that it is now comparable to the matter energy density?

Phase transitions through the cosmological history would have changed the total vacuum energy, and any solution
to the problem needs to ensure that the vacuum energy is suppressed throughout. But what makes the Cosmological
Constant Problem most challenging is that it is a low-energy problem, which can be posed at scales which we believe

60



Strings and Cosmology

• Big Bang? (before inflation?)

• Inflation or alternatives

• After Inflation ((P)Reheating, dark matter, baryogenesis,…)

• Today (dark energy)

• Future?



Low energy states in string theories

3. Moduli

3.1. String compactifications
Even if a full non-perturbative understanding of string and M-theory is still lacking, it has long been understood

that at low energies there are five di↵erent limits of string theory in ten-dimensional flat space, which are related
to each other by duality transformations. The M-theory picture also leads to a sixth limit, namely 11-dimensional
supergravity, often referred to as the low-energy limit of M-theory, the still-not-fully-defined theory that encompasses
all the string theories as di↵erent limits.

What these limits have in common, and arguably the single most important physical implication of string theories,
is the existence of extra dimensions. The process of starting from a high dimensional theory and then obtaining a
four-dimensional e↵ective theory is known as compactification, and over the past 35 years string compactifications
have been studied in much detail. Starting from a 10-dimensional theory, the di↵erent fields have to be decomposed
into their components in the four non-compact dimensions and also their ones in the extra compact dimensions. For
instance, the ten dimensional graviton gMN splits into the 4-dimensional graviton gµ⌫, a set of scalar fields gmn that
correspond to moduli fields and potentially also vector fields gµn. Notice that from the 4d perspective the indices m, n
are just internal indices, as in compactification the extra dimensions are regarded as no longer directly visible from
the 4d perspective.

gMN =

 
gµ⌫ gµn
gn⌫ gmn

!
µ, ⌫ = 1, · · · , 4 ; m, n = 1, · · · , 6 (110)

A similar decomposition is performed with the higher-form antisymmetric tensors BMN , CMNP, etc present in each of
the 6 theories, with the form content of each theory shown in table .

Theory Dimension Supercharges Massless Bosons

Heterotic 10 16 gMN , BMN , �
E8 ⇥ E8 Ai j

M

Heterotic 10 16 gMN , BMN , �
S O(32) Ai j

M

Type I 10 16 gMN , �, Ai j
M

S O(32) CMN

Type IIA 10 32 gMN , BMN , �
CM ,CMNP

Type IIB 10 32 gMN , BMN , �
C,CMN ,CMNPQ

M-Theory 11 32 gMN , BMN ,CMNP

Table 4: The massless bosonic spectrum of the five string theories and of 11-dimensional supergravity. The corresponding massless fermionic
spectrum is determined by supersymmetry. Moduli fields all originate from these simple spectra in 10d, reduced on the internal manifold. There
are also matter states, which in IIA and IIB string theories come from D-brane intersections and in heterotic string theory come from solutions of
the Dirac equation with non-trivial gauge configuration. Further moduli, such as open string moduli from separation between D-branes or closed
string bundle moduli, can also be present.

The most studied compactifications are those that preserveN = 1 supersymmetry. These o↵er a greater degree of
control over the e↵ective action compared to non-supersymmetric theories, while also allowing the presence of chiral
fermions and su�cient dynamics to allow for a non-supersymmetric vacuum state.

These correspond in the case of the heterotic or type I theories to the internal space being a Calabi-Yau (CY)
manifold. These are manifolds of S U(3) holonomy (or vanishing first Chern class). Calabi-Yau manifolds are complex
Kähler manifolds, meaning that the metric can be written as a second derivative of a Kähler potential K(zi, z̄ j̄: gi j̄ =
@i@ j̄K. However since they do not have isometries, except for a few numerical examples, there are no known analytic
metrics for compact CY manifolds of complex dimension greater than one. Instead, we rely mostly on their topological
structure (and indeed, the full details of the internal metric are not needed for most parts of the 4-dimensional e↵ective

23
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Calabi Yau spaces  

String Compactification and Brane Worlds



zon. In this respect, flux compactification falls into the mainstream of theoretical physics,
but di↵ers from some areas of string theory, and more general mathematical physics, in
which exact methods are prevalent. At the same time, the study of flux vacua owes a great
deal to approximation schemes that are founded on systematic expansions around exact
results, e.g. using mirror symmetry or nonrenormalization, as we will see.

3 Type IIB flux compactifications

The primary class of flux compactifications surveyed in this article are compactifications
of type IIB string theory on orientifolds of Calabi-Yau threefolds. To explain this class of
solutions we will first introduce the type IIB supergravity action and the two fundamen-
tal expansions, in gs and ↵0 (§3.1). In §3.3 we introduce the central ansatz of imaginary

self-dual (ISD) three-form fluxes, and in §3.4 and §3.5 we examine the superpotential and
Kähler potential that describe ISD configurations.

The massless bosonic spectrum of type IIB string theory in ten dimensions consists of
the metric gMN , two-form B2 and dilaton � in the Neveu-Schwarz-Neveu-Schwarz sector,
and the p-form potentials C0, C2, C4 in the Ramond-Ramond sector. We define the three-
form fluxes

F3 := dC2 , H3 := dB2 , (2)

the five-form

F̃5 := dC4 +
1

2
B2 ^ F3 �

1

2
C2 ^ H3 , (3)

and the complex axiodilaton
⌧ := C0 + ie�� . (4)

The full ten-dimensional e↵ective action S for the bosonic fields can be written as
S = S10 + Sloc, with S10 a bulk action and Sloc encoding the contributions of localized
objects such as D-branes. The bulk action S(0)

10 at leading order in the gs and ↵0 expansions
is

S(0)
10 =

1

22
10

Z
p

�g

 
R �

|r⌧ |2

2 (Im ⌧)2
�

|G3|
2

12 Im ⌧
�

|F5|
2

4·5!

!
+

1

8i2
10

Z
C4 ^ G3 ^ G3

Im ⌧
, (5)

where 10 is the ten-dimensional gravitational coupling, and the Einstein-frame metric gMN

is related to the string-frame metric ĝMN by gMN =
p
Im⌧ ĝMN . The self-duality condition

F̃5 = ?10F̃5 must be imposed as a constraint in addition to the equations of motion that
follow from (5). The F̃5 Bianchi identity reads

dF̃5 = H3 ^ F3 + ⇢D3
loc . (6)

D-branes carry Ramond-Ramond charge, and in particular C4 couples to the worldvolume
of a D3-brane, which is why the source term is denoted by ⇢D3

loc: it captures the D3-

6

3.3 ISD flux compactifications

In a flux compactification,11 the metric of the internal space is not Ricci-flat, because
the stress-energy of fluxes drives deviations from the Calabi-Yau vacuum configuration.
However, in an important class of type IIB flux compactifications, the metric is conformal
to a Calabi-Yau metric, di↵ering only by a warp factor. To see this, we consider the warped
ansatz

ds2 = e2A(y) gµ⌫(x)dx
µdx⌫ + e�2A(y)gmn(y)dy

mdyn , (22)

with gmn a Riemannian metric on a compact space X6 that admits a Calabi-Yau metric
gCY

mn. In a Calabi-Yau vacuum solution, A(y) is trivial and gmn = gCY
mn on X6, whereas

in the presence of general sources, gmn is unrelated to gCY
mn. Defining the Hodge star ?

constructed from the metric gmn, one finds that ?2 = �1, so ? has eigenvalues ±i. Writing
the three-form fluxes F3 and H3 in the complex combination

G3 := F3 � ⌧H3 , (23)

with ⌧ the axiodilaton, we can decompose G3 into +i and �i eigenspaces of ?,

G± := G3 ⌥ i ?G3 , (24)

which are termed imaginary self-dual (ISD) and imaginary anti-self-dual (IASD), respec-
tively.

Consider type IIB string theory compactified on an O3/O7 orientifold of a Calabi-
Yau threefold, and containing only ISD fluxes, D3-branes, D7-branes, O3-planes, and O7-
planes, without IASD fluxes and without antibranes. Such a configuration is called an ISD
compactification.

Several key properties of ISD compactifications were recognized by Giddings, Kachru,
and Polchinski [16]. First, the Einstein equations for (22) are solved by gmn = gCY

mn with
a generally nontrivial warp factor A(y). That is, the metric e�2A(y)gmn(y) on the internal
space is conformally Calabi-Yau. Second, the classical solution at leading order in the
↵0 expansion enjoys a dilatation symmetry: the size of X6 is a modulus (see §3.5.1).
Third, generic ISD fluxes give masses to the complex structure moduli of X6, and to
the axiodilaton. This is easy to see from the ten-dimensional action,

S10 �

Z

X6

G3 ^ ?G3 , (25)

in which the Hodge star, which depends on the metric gmn, couples to the fluxes.12

Dimensional reduction of an ISD compactification leads to an N = 1 supersymmetric
e↵ective action in four dimensions. On general grounds the resulting superpotential W
and Kähler potential K depend on the moduli as

W = W (zi, Ta, ⌧) , K = K(zi, z̄i, Ta, T a, ⌧, ⌧̄) , (26)

11In this review we concentrate on fluxes of antisymmetric tensor fields. More general fluxes, including
geometric fluxes (see e.g. [30]) and non-geometric fluxes [31, 32] are possible: see the review [33].

12One might wonder how to choose quantized fluxes that are su�ciently generic to stabilize all, rather
than just some, of the complex structure moduli. We will address this below.

11

zon. In this respect, flux compactification falls into the mainstream of theoretical physics,
but di↵ers from some areas of string theory, and more general mathematical physics, in
which exact methods are prevalent. At the same time, the study of flux vacua owes a great
deal to approximation schemes that are founded on systematic expansions around exact
results, e.g. using mirror symmetry or nonrenormalization, as we will see.

3 Type IIB flux compactifications

The primary class of flux compactifications surveyed in this article are compactifications
of type IIB string theory on orientifolds of Calabi-Yau threefolds. To explain this class of
solutions we will first introduce the type IIB supergravity action and the two fundamen-
tal expansions, in gs and ↵0 (§3.1). In §3.3 we introduce the central ansatz of imaginary

self-dual (ISD) three-form fluxes, and in §3.4 and §3.5 we examine the superpotential and
Kähler potential that describe ISD configurations.

The massless bosonic spectrum of type IIB string theory in ten dimensions consists of
the metric gMN , two-form B2 and dilaton � in the Neveu-Schwarz-Neveu-Schwarz sector,
and the p-form potentials C0, C2, C4 in the Ramond-Ramond sector. We define the three-
form fluxes

F3 := dC2 , H3 := dB2 , (2)

the five-form

F̃5 := dC4 +
1

2
B2 ^ F3 �

1

2
C2 ^ H3 , (3)

and the complex axiodilaton
⌧ := C0 + ie�� . (4)

The full ten-dimensional e↵ective action S for the bosonic fields can be written as
S = S10 + Sloc, with S10 a bulk action and Sloc encoding the contributions of localized
objects such as D-branes. The bulk action S(0)

10 at leading order in the gs and ↵0 expansions
is

S(0)
10 =

1

22
10

Z
p

�g

 
R �

|r⌧ |2

2 (Im ⌧)2
�

|G3|
2

12 Im ⌧
�

|F5|
2

4·5!

!
+

1

8i2
10

Z
C4 ^ G3 ^ G3

Im ⌧
, (5)

where 10 is the ten-dimensional gravitational coupling, and the Einstein-frame metric gMN

is related to the string-frame metric ĝMN by gMN =
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p
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1 Introduction

The fundamental physical laws that govern our Universe must describe gravity and quan-
tum mechanics. To discover the laws of quantum gravity, we cannot entirely rely on
terrestrial experiments, or even on cosmological observations: the energies of observable
processes are far too low to give a complete picture, in contrast to the way that collider
experiments eventually revealed the Standard Model of particle physics. We may hope for
some guidance from experiment, but theorists will have to provide a framework.

String theory is such a framework: it is a theory of quantum gravity through which
we can take a constructive approach to exploring possible laws of quantum gravity in our
Universe. The first obstacle is that the world we observe at low energies is four-dimensional,
while the best-understood solutions of string theory are ten-dimensional. Kaluza-Klein
theory [1,2], now more than a century old, provides a way to bridge this gap. If the extra
dimensions correspond to a six-dimensional compact space that is smaller than the reach
of any experimental probe then only three spatial dimensions will be seen.

However, the size and shape of the extra dimensions are dynamical: they are parame-
terized by the expectation values of scalar fields known as moduli. Unless the moduli have
large masses, they mediate long-range forces that are not observed in our world. Thus,
a central problem of Kaluza-Klein theories is to provide a dynamical explanation for the
requisite size of the extra dimensions, and to ensure that the moduli masses are consistent
with experiment. Addressing these challenges is the main obstacle in connecting string
theory to observations, and it is the subject of this review.1

2 The vacuum problem

To understand quantum gravity in our four-dimensional, non-supersymmetric Universe, we
will study compactifications of superstring theory on six-dimensional compact spaces, and
seek solutions in which supersymmetry is broken. In this section we will carefully explain
the reasoning that directs us to the class of solutions that are the subject of this chapter:
namely, flux compactifications on orientifolds of Calabi-Yau threefolds.

To begin, we take a product ansatz for a ten-dimensional spacetime,

ds2 = gµ⌫(x)dx
µdx⌫ + gmn(y)dy

mdyn , (1)

for µ, ⌫ = 0, . . . , 3 and m,n = 4, . . . , 9. We suppose that gmn is a Riemannian metric on
some compact space2 X6. Defining the Ricci tensors Rµ⌫ and Rmn constructed from gµ⌫

and gmn, respectively, the ansatz (1) solves the ten-dimensional vacuum Einstein equations
if and only if Rµ⌫ = Rmn = 0. Thus, vacuum solutions of string theory are furnished by
Ricci-flat six-manifolds.

1For previous reviews on fluxes and the string landscape see [3–5]. For string cosmology see [6], the
recent review [7], and references therein. The geometry of string compactifications is treated in [8].

2This space may be a proper six-manifold, or it may be some more singular space on which string
theory remains well-defined, but in both cases we will use the term ‘manifold’.
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What are the moduli fields?

3. Moduli

3.1. String compactifications
Even if a full non-perturbative understanding of string and M-theory is still lacking, it has long been understood

that at low energies there are five di↵erent limits of string theory in ten-dimensional flat space, which are related
to each other by duality transformations. The M-theory picture also leads to a sixth limit, namely 11-dimensional
supergravity, often referred to as the low-energy limit of M-theory, the still-not-fully-defined theory that encompasses
all the string theories as di↵erent limits.

What these limits have in common, and arguably the single most important physical implication of string theories,
is the existence of extra dimensions. The process of starting from a high dimensional theory and then obtaining a
four-dimensional e↵ective theory is known as compactification, and over the past 35 years string compactifications
have been studied in much detail. Starting from a 10-dimensional theory, the di↵erent fields have to be decomposed
into their components in the four non-compact dimensions and also their ones in the extra compact dimensions. For
instance, the ten dimensional graviton gMN splits into the 4-dimensional graviton gµ⌫, a set of scalar fields gmn that
correspond to moduli fields and potentially also vector fields gµn. Notice that from the 4d perspective the indices m, n
are just internal indices, as in compactification the extra dimensions are regarded as no longer directly visible from
the 4d perspective.

gMN =

 
gµ⌫ gµn
gn⌫ gmn

!
µ, ⌫ = 1, · · · , 4 ; m, n = 1, · · · , 6 (110)

A similar decomposition is performed with the higher-form antisymmetric tensors BMN , CMNP, etc present in each of
the 6 theories, with the form content of each theory shown in table .

Theory Dimension Supercharges Massless Bosons

Heterotic 10 16 gMN , BMN , �
E8 ⇥ E8 Ai j

M

Heterotic 10 16 gMN , BMN , �
S O(32) Ai j

M

Type I 10 16 gMN , �, Ai j
M

S O(32) CMN

Type IIA 10 32 gMN , BMN , �
CM ,CMNP

Type IIB 10 32 gMN , BMN , �
C,CMN ,CMNPQ

M-Theory 11 32 gMN , BMN ,CMNP

Table 4: The massless bosonic spectrum of the five string theories and of 11-dimensional supergravity. The corresponding massless fermionic
spectrum is determined by supersymmetry. Moduli fields all originate from these simple spectra in 10d, reduced on the internal manifold. There
are also matter states, which in IIA and IIB string theories come from D-brane intersections and in heterotic string theory come from solutions of
the Dirac equation with non-trivial gauge configuration. Further moduli, such as open string moduli from separation between D-branes or closed
string bundle moduli, can also be present.

The most studied compactifications are those that preserveN = 1 supersymmetry. These o↵er a greater degree of
control over the e↵ective action compared to non-supersymmetric theories, while also allowing the presence of chiral
fermions and su�cient dynamics to allow for a non-supersymmetric vacuum state.

These correspond in the case of the heterotic or type I theories to the internal space being a Calabi-Yau (CY)
manifold. These are manifolds of S U(3) holonomy (or vanishing first Chern class). Calabi-Yau manifolds are complex
Kähler manifolds, meaning that the metric can be written as a second derivative of a Kähler potential K(zi, z̄ j̄: gi j̄ =
@i@ j̄K. However since they do not have isometries, except for a few numerical examples, there are no known analytic
metrics for compact CY manifolds of complex dimension greater than one. Instead, we rely mostly on their topological
structure (and indeed, the full details of the internal metric are not needed for most parts of the 4-dimensional e↵ective
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Three related questions

• Moduli stabilization

• De Sitter

• Inflation

7 Quantum Initial Conditions

One of the most remarkable features of inflation is that it provides a natural mechanism for

producing the initial conditions for the hot big bang. To see this, recall that the evolution of the

inflaton field �(t) governs the energy density of the early universe ⇢(t) and, hence, controls the end

of inflation (see Fig. 20). Essentially, the field � plays the role of a “clock” reading o↵ the amount

of inflationary expansion still to occur. By the uncertainty principle, arbitrarily precise timing is

not possible in quantum mechanics. Instead, quantum-mechanical clocks necessarily have some

variance, so the inflaton will have spatially varying fluctuations ��(t,x). There will therefore be

local di↵erences in the time when inflation ends, �t(x), so that di↵erent regions of space inflate

by di↵erent amounts. These di↵erences in the local expansion histories lead to di↵erences in the

local densities after inflation, �⇢(t,x), and to curvature perturbations in comoving gauge, ⇣(x).

It is worth remarking that the theory was not engineered to produce these fluctuations, but that

their origin is instead a natural consequence of treating inflation quantum mechanically.

Figure 20. Quantum fluctuations ��(t,x) around the classical background evolution �̄(t). Regions acquir-
ing negative fluctuations �� remain potential-dominated longer than regions with positive ��. Di↵erent
parts of the universe therefore undergo slightly di↵erent evolutions. After inflation, this induces density
fluctuations �⇢(t,x).

7.1 Quantum Fluctuations

7.1.1 Free Scalar in de Sitter

Before attacking the real problem of interest, namely the quantization of coupled inflaton-metric

fluctuations during inflation, we will consider the simpler case of a free scalar field in de Sitter

space. We will assume that the scalar field carries an insignificant amount of the total energy

density and, hence, doesn’t backreact on the de Sitter geometry. Such a field is sometimes called

a spectator field.

The action of a massless, free scalar field in de Sitter space is

S =
1

2

Z
d4x

p
�g gµ⌫@µ'@⌫'

=
1

2

Z
d⌧ d3x a2

h
'̇2 � (@i')2

i
, (7.1)
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Figure 1: Scalar potential for A = 1, B = �25, C = 156.25, b0 = �b1 = 1.
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Then, using the leading order expression for the RG solution for ↵:

↵ ⇠ 1

b0 � b1 log ⌧
(1.9)

we can plug this in the in the scalar potential above and can search for minima of

the potential. Typically for small ↵ and coe�cients of order one the behaviour will

be a runaway, However for particular values of the coe�cients A,B,C, · · · there may

be non-trivial solutions. In particular, if C � B � A it is possible to find minima of

the potential for which ↵ ⌧ 1 and the value of the potential at the minimum can be

positive or negative.

2. Multiplicative Logs

Let us now slightly modify the log dependence on the Kähler potential.

K = �3 log ((T + T
⇤
)F (log(T + T

⇤
)) := �3 logP(⌧) (1.10)
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Sources of moduli potentials

3.3. Moduli Stabilisation
The low energy e↵ective action of string theories in ten dimensions can be organised in a double expansion: the ↵0

and gs expansions. The former captures the e↵ect of integrating out heavy string modes (i.e the massive string states)
whereas the latter describes string loops. At leading order, the e↵ective low-energy actions are the ten-dimensional
supergravity theories (and 11-dimensional supergravity in the case of M-theory).

The simplest compactified vacuum configurations are those in which the internal flux fields vanish and the scalar
fields in the ten-dimensional actions are constant. As a result, the ten-dimensional matter stress-tensor vanishes,
leading to a Minkowski compactification with a Ricci flat internal manifold. A requirement that some supersymmetry
is preserved then implies that the internal manifold is a Calabi-Yau. Upon dimensional reduction, this leads to massless
(complex) scalars whose wavefunctions in the extra dimensions are given by harmonic forms on the Calabi-Yau
(Kähler deformations and axionic fields that arise from the dimensional reduction of form fields pair up as complex
scalars, whereas complex structure deformations are intrinsically complex).

As mentioned earlier, these massless scalars are disastrous for phenomenology and so construction of phenomeno-
logically viable models requires incorporating e↵ects that stabilise the moduli. This requires going beyond the sim-
plest solutions and incorporating various additional e↵ects into the e↵ective action. The analysis depends on the type
of string theory. Before getting into the details for each case, we give a qualitative description of the key ingredients.
As the appearance of moduli within simple compactifications is due to the presence of flat directions in the low energy
e↵ective field theories’ scalar potential, to lift them we need to include e↵ects that lead to a non-trivial energy profile
along these directions.

• Fluxes: A p-form flux can thread a p-cycle, ⌃p, in the internal manifold. The threading is characterised by
integers, as the Dirac quantisation condition forbids continuous deformations. The presence of background
flux can lead to a non-trivial energy profile along various directions in field space. For instance, for the overall
radius of the compactification (R), a p-form flux contributes to the potential (see [62, 54] for derivations of these
di↵erent scalings) as

V(R) / R�6�2p,

lifting the flatness of the radial direction. These fluxes are crucial to all flux compactifications, and also appear
in e.g. the maximally supersymmetric AdS 5 ⇥ S 5 solution used in the AdS/CFT correspondence [63].

• Localised objects: Space filling D-branes and orientifold planes are consistent with maximal symmetry in four
dimensions and contribute to the moduli potential. For a p-dimensional localised object, the contribution to the
potential for the radial mode scales as

V(R) / TpRp�15,

where Tp is the tension of the object. We note that this tension is negative for O-planes.

• Extra dimensional curvature: Backgrounds with non-trivial matter stress-tensors have non-vanishing curvature
in the extra dimension, which also contributes to the e↵ective potential. For the radion,

V(R) / 1
R8 ,

with a positively curved internal space making a negative contribution to the potential (e.g. in the S 5 in the
AdS/CFT AdS 5 ⇥ S 5 solution).

• ↵0 and loop corrections: The e↵ective potential receives contributions order by order in the ↵0 and gs expan-
sions. These can lift directions which are flat in the leading order approximation. For instance, the leading ↵0
correction in type IIB [64] makes a contribution to the radion potential which behaves as

V(R) / 1
R18 .

Such ↵0 corrections are crucial in e.g. the Large Volume Scenario.
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Dine Seiberg Problem

T

V

Figure 1: A plot of V vs ⌧ for the scalar potential V = U(ln ⌧)/⌧
4, revealing a de Sitter or anti-de

Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|
2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima ⌧ = ⌧0 of this potential generically occur in the regime where ↵(⌧0) ⇠

O(1). But if stabilization of other moduli make ↵g0 small, then inspection of (2.10) shows

that ⌧0 must be very large because ↵g0 ln ⌧0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� ⇠

����
U2

U3

���� ⇠ O(�) (2.12)

for some smallish � ⌧ 1. Such a hierarchy allows solutions to �V/�⌧ |⌧0
= 0 for ↵0 ⇠ O(�)

and so

b1 ln ⌧0 = ↵
�1
g0 � �

�1 (2.13)

can easily be order 1/� if � ⌧ ↵g0 and b1 < 0. For � <
⇠ 1/10 the value predicted for ⌧0 can be

enormous ⌧0 ⇠ e
1/�, justifying the validity of the 1/⌧ expansion ex post facto. As is easy to

check, when 9 U
2
2 > 32 U1U3 the potential has a local minimum at ⌧0 that is separated from

the runaway to ⌧ ! � by a local maximum at ⌧1 > ⌧0 (see Fig. 1).

The value of the potential at this minimum is positive if U
2
2 < 4 U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(⌧0) ⇠ O(�4) when

U3 ⇠ O(1), it happens that the condition V
0(⌧0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(⌧0) ⇠ O(�5). As a result both V (⌧0)

and ⌧
2(�2

V/�⌧
2)

��
⌧0

are O(�5|w0|
2
/⌧

4
0 ), and this can be extremely small given that ⌧0 can be

– 10 –

I II III

Figure 1: The Dine-Seiberg problem. For large volumes and weak coupling the scalar
potential runs away towards the infinite volume or zero coupling limit. Region III is the
region in which calculations in the EFT can be arbitrarily well controlled. The natural place
to find a minimum, if one exists, is in region I, since it is here that quantum e↵ects could
most readily counterbalance the leading-order runaway behaviour. Obtaining a minimum
in the physically interesting region II, with finitely large volume and weak coupling, is more
challenging and requires extra sources of hierarchies. Examples of such hierarchies are those
achieved by a choice of fluxes in the KKLT scenario, or by competition of perturbative and
non-perturbative terms in LVS.

One would like to find regions of moduli space where the portions of V�K and V�W that
are computable actually su�ce to ensure a controlled minimum for the moduli potential.28

The possible hierarchies that will be relevant are then29

|W0| ⇠ �W � �K , (95)

|W0| � �K ⇠ �W , (96)

|W0| � �K � �W . (97)

We have already discussed (95): the KKLT scenario relies on choosing fluxes such that
�W ⇠ |W0|. In this case V�K ⇠ |W0|

2�K ⌧ V�W ⇠ |W0|
2, and so we can neglect the

28Computing Knp systematically is currently out of reach, so we will only study regions where �K ⇡

Kpert., and we therefore omit Knp henceforth.
29The cases (95) and (96) could be seen not as two alternative scenarios, but instead as di↵erent regimes

for exploring the same class of models, in the sense that a scan of values of the flux superpotential can
smoothly interpolate from one class to the other, as was shown in the example of CP4[1, 1, 1, 6, 9] in [127].
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Only fully trust runaway part 
(swampland programme)

Dine, Seiberg 1985
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e.g. KKLT/LVS Scenarios

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 9: A cartoon representation of a typical Calabi-Yau configuration as used in KKLT and LVS scenarios. The D7-branes wrapped 4-cycles
and may host the gauge theory that provides the corresponding non-perturbative e↵ects in the superpotential. The non-trivial fluxes typically lead
to the 3-cycles corresponding to long throats that give rise to warped factors in the metric and may host anti-D3-branes at their tip to provide the
dS uplift.

3.4.4. De Sitter in IIB
The vacua we have discussed so far are AdS. It is possible to obtain dS vacua either by incorporating additional

e↵ects which are part of the low energy e↵ective action or taking a more general approach to finding minima of the
e↵ective action. Below, we describe various proposals for constructions of dS vacua26 in the IIB setting, illustrating
such general constructions in figures 9 and 10.

• Anti-branes: This was proposed as part of the original KKLT construction [128]. Anti-D3-branes experience
a potential in the imaginary self dual backgrounds of [92]. This drives them to the bottoms of warped throats
within the compactification. An anti-D3-brane at the bottom of a warped throat makes a positive definite
contribution to the potential. This is given by

VD3 ⇠
e4A0

(T + T )2
,

where eA0 is the value of the warp factor at the bottom of the throat. Such a contribution uplifts the KKLT AdS
vacuum to a dS one. The introduction of an anti-brane takes the configuration away from the pseudo-BPS class,
and various aspects of the e↵ective field theory remain to be understood (see e.g. [205, 206, 207, 208, 209,
210, 211, 212, 213, 214] and references therein). Embedding of the system in a supersymmetric e↵ective field
theory by making use of the nilpotent field formalism is discussed in [215] and references therein. A recent
construction [216], provides a way to make dS constructions with anti-D3-branes minimalistic (in addition to
keeping the e↵ective field theory under control).

• Magnetised branes [217]: Here, one considers U(1) fluxes localised in a warped throat on D7-branes wrapping
the T (volume) modulus. If the vacuum expectation values of the matter fields charged under the U(1) are zero,

26For recent summaries of the state of the art in dS constructions and the challenges involved see for example [203, 204].
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Warning: The control status of these approaches is under heated debate ! 



Q: Why we do not see the extra dimensions?
A: Because they are too small to be seen

Q: Why are they so small?
A1: We don’t know! (20th century)
A2: A combination of fluxes and quantum corrections fix the 
moduli and/or we may live on a ‘brane’ (21st century)

Century old Moduli Problem

Kaluza, Klein 1920s
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Bubble nucleation Expanding bubbles within bubbles Our universe = one of many bubbles

The multiverse



The String Landscape and Dark Energy

• Anthropic prediction 𝜦~𝟏𝟎_𝟏𝟐𝟎 (Weinberg 1987)

• Evidence for Dark Energy (1998)

• Concrete proposal (Bousso-Polchinski 2000)

• Explicit String realizations (KKLT, LVS,… 2003+)*

The worst solution to the dark energy problem with the exception of all the others!!! 



String Inflation

V(!)
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Slow-roll
Inflation

Reheating
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Figure 3: An illustration of the standard picture of slow-roll inflation ending in fast roll of the inflation to a minimum and subsequent reheating of
the universe.

that is, the overall pressure of the universe should be negative p < �⇢/3, which corresponds to a violation of the strong
energy condition (SEC).2This occurs in neither radiation nor matter dominated phases (for which p = ⇢/3, p = 0
respectively). However, one simple energy source that can drive inflation is the positive potential energy of a single
(canonically normalised) scalar field with negligible kinetic energy. As we will encounter later, other alternatives are
also possible.

2.3.1. Slow-roll conditions
Let us consider a single (canonically normalised) scalar field, the inflaton, with potential energy V , coupled to

gravity. Its action reads

S =
Z

d4x
p�g

"
1

8⇡G4

R4

2
� 1

2
@µ' @

µ' � V(')
#
. (30)

Although the inflaton can in principle depend on both time and space, inflation rapidly smooths out spatial variations,
and thus for the background evolution, it su�ces to study3 ' = '(t). In a spatially flat FLRW spacetime (1) the
variation of the action (30) with respect to ' gives

'̈ + 3H'̇ + V,' = 0 . (31)

The energy momentum tensor of the field derived from (30) gives

Tµ⌫ = @µ'@⌫' � gµ⌫
"
1
2

(@')2 + V(')
#
. (32)

In the flat FLRW background, the energy density and pressure of the scalar are found to be

⇢' =
1
2
'̇2 + V(') , (33a)

p' =
1
2
'̇2 � V(') . (33b)

2The SEC for a perfect fluid states that ⇢ + p � 0 [9].
3The spatial dependence will be relevant later for the quantum fluctuations of the inflaton.
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4.2.5. Single-field String Inflation and Cosmological Observables
After presenting a brief description of several examples of single-field models of string inflation, let us now

summarise and compare their predictions for two main cosmological observables, the scalar spectral index ns and the
tensor-to-scalar ratio r, evaluated at the benchmark point Ne ' 52. These predictions are listed in Tab. 4.

String model ns r
Fibre Inflation 0.967 0.007

Blow-up Inflation 0.961 10�10

Poly-instanton Inflation 0.958 10�5

Aligned Natural Inflation 0.960 0.098
N-Flation 0.960 0.13

Axion Monodromy 0.971 0.083
D7 Fluxbrane Inflation 0.981 5 ⇥ 10�6

Wilson line Inflation 0.971 10�8

D3-D3 Inflation 0.968 10�7

Inflection Point Inflation 0.923 10�6

D3-D7 Inflation 0.981 10�6

Racetrack Inflation 0.942 10�8

Volume Inflation 0.965 10�9

DBI Inflation 0.923 10�7

Table 4: Comparison among the predictions for the scalar spectral index and the tensor-to-scalar ratio of the main models of string inflation,
evaluated as a benchmark point at Ne ' 52.

Note that there is a relatively small number of inflaton candidates among all open and closed string moduli and
most have been used in concrete proposals of string inflation. Note also that as per the scientific tradition, more than
half of them are already in tension with the latest experimental bounds on ns and r. Models such as axion monodromy
and fibre inflation will be further tested in the planned experiments for the next 5-10 years.

Let us stress that we focused just on a restricted list of single-field models which represent the most developed
classes of string inflationary scenarios. A broader ensemble of di↵erent models is present in the literature, even
if most of them are just string-inspired, or supergravity-inspired, since they are based on ideas coming from string
theory but are still lacking a solid stringy embedding or a detailed mechanism for moduli stabilisation. Just to name
some of these examples, let us mention M-flation [580, 581, 582, 583], ↵-attractor models [584, 585, 586, 587, 588],
sequestered inflation [589, 590], axion inflation on a steep potential due to dissipation from gauge field production
[591, 592], and chromonatural inflation [593].

4.3. Multi-Field Inflation
So far our discussion has been restricted to the case where the inflation proceeds along either a single direction

– such as a closed string modulus, the radial direction of a D-brane moving in the 6-dimensional compact space, a
single Wilson line, or a single combination of axions – or with predictions that are e↵ectively single-field, such as
racetrack inflation. Indeed models are usually designed this way, with all the non-inflaton fields sitting in their local
minima as the inflaton rolls. This has the obvious advantage of simplicity, besides being e↵ective in describing the
primordial fluctuations, which are approximately scale invariant, statistically Gaussian, isotropic and homogeneous to
high degree.

Going beyond this simple picture, however, is not only well motivated from an observational point of view, as
future experiments may reveal interesting or unexpected physics (such as non-gaussianities, anisotropies, inhomo-
geneities), but also from a theoretical perspective. In particular, in string compactifications, moduli (spin-0) fields are
ubiquitous, while spin-1 fields also enter in the process of moduli stabilisation (see Sec. 3.3).

Thus a generic feature of string inflation models is that a significant number of moduli and/or spin-1 fields, with
a range of masses, may be dynamically active during inflation. Their dynamics can thus contribute to the inflationary
mechanism at the level of background or fluctuation evolution, and can leave imprints on the properties of scalar as
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Challenges: eta problem, scales (KL problem), moduli stabilisation, observations?
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1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation as well as

the full class of monomial potentials V ⇠ �n are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.

– 1 –

Astronomy & Astrophysics manuscript no. ms © ESO 2021
August 10, 2021

Planck 2018 results. VI. Cosmological parameters
Planck Collaboration: N. Aghanim54, Y. Akrami15,57,59, M. Ashdown65,5, J. Aumont95, C. Baccigalupi78, M. Ballardini21,41, A. J. Banday95,8,

R. B. Barreiro61, N. Bartolo29,62, S. Basak85, R. Battye64, K. Benabed55,90, J.-P. Bernard95,8, M. Bersanelli32,45, P. Bielewicz75,78, J. J. Bock63,10,
J. R. Bond7, J. Borrill12,93, F. R. Bouchet55,90, F. Boulanger89,54,55, M. Bucher2,6, C. Burigana44,30,47, R. C. Butler41, E. Calabrese82,

J.-F. Cardoso55,90, J. Carron23, A. Challinor58,65,11, H. C. Chiang25,6, J. Chluba64, L. P. L. Colombo32, C. Combet68, D. Contreras20, B. P. Crill63,10,
F. Cuttaia41, P. de Bernardis31, G. de Zotti42, J. Delabrouille2, J.-M. Delouis67, E. Di Valentino64, J. M. Diego61, O. Doré63,10, M. Douspis54,
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ABSTRACT
We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) an-
isotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results,
improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to signifi-
cant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on
many parameters, with residual modelling uncertainties estimated to a↵ect them only at the 0.5� level. We find good consistency with the standard
spatially-flat 6-parameter ⇤CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base⇤CDM” in this paper),
from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density ⌦ch2 = 0.120 ± 0.001,
baryon density ⌦bh2 = 0.0224 ± 0.0001, scalar spectral index ns = 0.965 ± 0.004, and optical depth ⌧ = 0.054 ± 0.007 (in this abstract we quote
68 % confidence regions on measured parameters and 95 % on upper limits). The angular acoustic scale is measured to 0.03 % precision, with
100✓⇤ = 1.0411± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors,
in many commonly considered extensions. Assuming the base-⇤CDM cosmology, the inferred (model-dependent) late-Universe parameters are:
Hubble constant H0 = (67.4±0.5) km s�1Mpc�1; matter density parameter⌦m = 0.315±0.007; and matter fluctuation amplitude�8 = 0.811±0.006.
We find no compelling evidence for extensions to the base-⇤CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and
considering single-parameter extensions) we constrain the e↵ective extra relativistic degrees of freedom to be Ne↵ = 2.99±0.17, in agreement with
the Standard Model prediction Ne↵ = 3.046, and find that the neutrino mass is tightly constrained to

P
m⌫ < 0.12 eV. The CMB spectra continue

to prefer higher lensing amplitudes than predicted in base ⇤CDM at over 2�, which pulls some parameters that a↵ect the lensing amplitude away
from the ⇤CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry)
BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe,⌦K = 0.001±0.002. Also combining
with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = �1.03 ± 0.03, consistent with a cosmological
constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and
Keck Array data, we place a limit on the tensor-to-scalar ratio r0.002 < 0.06. Standard big-bang nucleosynthesis predictions for the helium and
deuterium abundances for the base-⇤CDM cosmology are in excellent agreement with observations. The Planck base-⇤CDM results are in good
agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results
including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6�, tension with local
measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not
favoured by the Planck data.

Key words. Cosmology: observations – Cosmology: theory – Cosmic background radiation – cosmological parameters
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5. Post-Inflation

This section refers to physics that originates between the end of inflation and the start of the thermal Hot Big Bang.
It begins with the universe still dominated by the vacuum energy of inflation, but now moving away from slow-roll as
the inflationary epoch terminates. It ends as the universe settles into the Hot Big Bang: a radiation-dominated epoch
with the energy density predominantly in relativistic thermalised Standard Model degrees of freedom. In this section,
we focus on what happened between these two eras. This is not a comprehensive review of all aspects of cosmology
in this epoch. Instead, we focus on those aspects where stringy physics is especially relevant. Readers interested in a
more general treatment of the standard cosmology can consult e.g. [650, 4], while an earlier discussion of aspects of
moduli physics in this epoch is [651] and a review of non-standard expansion histories is [652].

While it is true that there exists a ‘standard’ cosmological account of reheating, involving a rapid transfer of energy
from inflationary degrees of freedom to relativistic Standard Model degrees of freedom, in string theory cosmologies
there are no strong reasons to expect this standard account to hold. Although some aspects of the standard cosmology
may be preserved in some string theory models, the standard cosmology may be modified in (at least) three ways.
First, through the existence of large field displacements between the end of inflation and the final vacuum. Second, in
there being no necessary relationship between the inflaton field and the field responsible for reheating. Third, through
the expectation of a long moduli-dominated epoch in the universe culminating in moduli-driven reheating. These
possibilities are illustrated in Fig. 21. In addition, UV complete string models may connect aspects of early universe
and particle physics that otherwise appear uncorrelated.

V(!)

!!min

"! ≤ $!

"! ≈ &'$!

(1016 GeV)4

inflation

kination

Moduli 
domination
and reheating

V ≈ e-!"

Scaled by  
≈ 1030

Figure 21: A cartoon of one way moduli and stringy physics can substantially modify the post-inflationary history of the universe. Following a
period of inflation at relatively high energies, several epochs may occur prior to the start of the Hot Big Bang. We show here the case of a kination
epoch followed by moduli domination leading to late reheating. Note the large range of scales that may arise in the scalar potential and the scalar
field displacement. In particular, the barrier after the minimum may be 20 (or more) orders of magnitude smaller than the energy scale during
inflation (Vbarrier ' 10�20Vinf ).

5.1. The Standard Cosmology
We start with a brief review of the ‘standard’ account of post-inflationary cosmology. During the inflationary

epoch, the universe was dominated by the vacuum energy density of a scalar field and the evolution of the universe

81
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Figure 13: Four snapshots of the energy density in a 2d simulation for our LVS blow-up modulus
example at a = 1.26, a = 2, a = 3.02 and a = 4.02. Clearly, asymmetric oscillons are formed
at a ⇠ 3. Videos of the simulations can be found here [59].
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GW spectrum: KKLT
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Figure 15: Spectrum of Gravitational waves ⌦GW,e(k) as a function of the physical momentum
a
�1

k. The spectrum is shown at di↵erent moments in time which correspond to: the end
of linear preheating at a ' 1.16 (blue), shortly after the beginning of the non-linear regime
at a ' 1.45 (green), at a ' 2.1 (orange), and at the end of the simulation a ' 2.5 (red).

oscillons do not produce GW. One possible reason for the (yet) absent peaky structure
could be that the latter is simply hidden by the stochastic background produced during
and shortly after the tachyonic oscillations. This background is produced once during
the early stage of preheating and is subsequently redshifted due to the expansion of the
Universe. Oscillons, however, are an active source of GW production until they decay. If
they live for a su�ciently long period and e�ciently produce GWs, the peaky structure in
the spectrum of GWs will eventually become visible at some later stage of the evolution.
The final spectrum shown in Figure 15 (red curve), is not expected to be the final result
since oscillons continue to be produced. If the universe would instantly reheat at that
time the frequencies of the plateau (corresponding to a

�1
k/m ⇠ 0.1 � 1 in Figure 15)

would lie today at

f0 ⇠ 108 Hz� 109 Hz , with ⌦GW,0 ⇠ 10�10
� 5⇥ 10�10

. (57)

Similar as in KKLT, an overall rescaling of the potential from complex structure moduli
which is smaller than unity would also lead to lower frequencies. Altering, other model
parameters could in principle also alter the frequencies of the stochastic GW background.
Furthermore, the volume modulus being the lightest modulus in this scenario, will at
some point start to dominate the energy density of the Universe. This, in turn, leads to
an additional period of matter domination and thus pushing not only the frequencies but
also ⌦GW,0 to lower values.

4 Conclusions and open questions

Moduli fields may be the only stringy remnants that survive at low energies and partic-
ularly after a period of inflation. It is usually stated that the dilution e↵ect of inflation
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Figure 15: Spectrum of Gravitational waves ⌦GW,e(k) as a function of the physical momentum
a
�1

k. The spectrum is shown at di↵erent moments in time which correspond to: the end
of linear preheating at a ' 1.16 (blue), shortly after the beginning of the non-linear regime
at a ' 1.45 (green), at a ' 2.1 (orange), and at the end of the simulation a ' 2.5 (red).

oscillons do not produce GW. One possible reason for the (yet) absent peaky structure
could be that the latter is simply hidden by the stochastic background produced during
and shortly after the tachyonic oscillations. This background is produced once during
the early stage of preheating and is subsequently redshifted due to the expansion of the
Universe. Oscillons, however, are an active source of GW production until they decay. If
they live for a su�ciently long period and e�ciently produce GWs, the peaky structure in
the spectrum of GWs will eventually become visible at some later stage of the evolution.
The final spectrum shown in Figure 15 (red curve), is not expected to be the final result
since oscillons continue to be produced. If the universe would instantly reheat at that
time the frequencies of the plateau (corresponding to a
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k/m ⇠ 0.1 � 1 in Figure 15)

would lie today at
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Similar as in KKLT, an overall rescaling of the potential from complex structure moduli
which is smaller than unity would also lead to lower frequencies. Altering, other model
parameters could in principle also alter the frequencies of the stochastic GW background.
Furthermore, the volume modulus being the lightest modulus in this scenario, will at
some point start to dominate the energy density of the Universe. This, in turn, leads to
an additional period of matter domination and thus pushing not only the frequencies but
also ⌦GW,0 to lower values.

4 Conclusions and open questions

Moduli fields may be the only stringy remnants that survive at low energies and partic-
ularly after a period of inflation. It is usually stated that the dilution e↵ect of inflation
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5.1. Moduli Domination
In expanding universes, matter and radiation redshift as

⇢matter /
1

a(t)3 ,

⇢radiation /
1

a(t)4 , (152)

and so matter wins out over radiation. Although both familiar and basic, Eq. (152) implicitly contains one of
the most important elements of string cosmology. As discussed in section XXREFXX, moduli originate from
higher-dimensional modes of the graviton and interact through gravitationally suppressed couplings. On dimensional
grounds, the decay rates of such moduli are set as

�� =
�

16⇡
m3
�

M2
P
, (153)

where � is a dimensionless O(1) constant, whereas particle with renormalisable perturbative decays have decay rates
given by Eq. (150). Compared to these, the lifetimes of the scalar moduli are enhanced by a factor of M2

P
m2
�

. Indeed,
as the Planck scale is the silverback gorilla of energy scales in physics, moduli also outlive other particles with non-
renormalisable interactions suppressed by (merely) the GUT scale.

When heavy particles decay, their decay products are normally relativistic. With radiation redshifting as ⇢� ⇠ a�4

and matter redshifting as ⇢ ⇠ a�3, the relativistic products from ‘early’ decays rapidly grow sub-dominant to any
matter present. With the evolution of cosmic time, a universe crowded with particles inevitably becomes dominated
by the longest-living, latest-decaying matter. As gravity is, both empirically and theoretically, the weakest force, this
implies that it is a generic expectation of string compactifications that the universe will go through a stage where its
energy density is dominated by the mass-energy of moduli particles for which all interactions are non-renormalisable
and suppressed by the Planck scale.

This era of moduli domination is one of the most generic and distinctive expectations of string cosmology, and it is
one of the most notable ways in which string cosmology di↵ers quite substantially from many field theory approaches
to inflation where reheating is assumed to be driven by fields with couplings that are either renormalisable or, at least,
suppressed by scales far lower than the Planck scale. While not strictly unique to string theory (the key feature is the
presence of massive scalars with gravitational-strength interactions), it represents a very di↵erent cosmological history
to many Beyond-the-Standard-Model post-inflationary scenarios, which involve a rapid transfer of energy from the
inflationary degrees of freedom into Standard Model particles.

Sometimes string theory is seen as an esoteric UV issue of little interest to hard-working practical-minded cos-
mologists studying the universe one trillionth of a second after the Big Bang. It is, therefore, important to note that
the cosmology of such field theory scenarios is unstable to the inclusion of a sector with only gravitationally coupled
particles (i.e. moduli). As described above, as long as there is some initial amplitude in the moduli fields, we expect
this energy density to grow so that the universe passes through an epoch of moduli domination.

Naively, one may think it possible to avoid this by assuming that the inflaton is charged only under Standard
Model degrees of freedom, and that all inflationary dynamics only involves a displacement in the inflaton field. The
claim is that, in this case, there would be no amplitude in the moduli degrees of freedom or, put another way, the
post-inflation moduli would not be displaced from their final minimum during inflation. However, in practice it is
very hard to engineer this: in the context of any e↵ective Lagrangian with a UV completion in string theory, there
will almost always be an initial displacement of the moduli from the final minimum, and thus some amplitude in the
moduli field. This is particularly so for the universal moduli – the overall volume and the dilaton.

Why? We illustrate this in the context of IIB compactifications, but the argument extends easily. The supergravity
scalar potential is (with MP = 1)

V = eK
⇣
Ki j̄DiWDj̄W̄ � 3|W |2

⌘
. (154)

The Kähler potential is

K = �2 lnV(T + T̄ ) � ln
 Z

i⌦ ^ ⌦̄
!
� ln(S + S̄ ), (155)
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Here the initial condition has been set as �(t0) = �0. The residual integration constant has been fixed by requiring
that a time coordinate of t = 0 represents (at least formally) an initial singularity where the energy densities diverge.
It is worth noting that during kination, the field moves through approximately one Planckian distance in field space
each Hubble time. This is an interesting feature from the perspective of string cosmology, as transPlanckian field
excursions are home territory for string theory and require a theory of quantum gravity to ensure adequate control of
the e↵ective field theory expansion over such large displacements. Any extended kination epoch, lasting for many
Hubble times, will result in a field traversing a markedly transPlanckian distance.

The scale factor behaves as
a(t) / t1/3, (180)

which follows immediately from H2 ⌘ ȧ(t)2

a(t)2 =
�̇2

6M2
P
. During a kination epoch, the energy density therefore drops o↵ as

⇢kination(t) / 1
a(t)6 . (181)

By comparing with ⇢ / a�3 or ⇢ / a�4 (behaviours of matter and radiation domination), we see that kinetic energy
dilutes much faster. This implies that during a fast-rolling kination phase, any initial sources of matter or radiation
will – over time – catch up with the kination energy. At this point, their additional Hubble friction can e↵ectively stop
the evolution of the field (it becomes overdamped) until the energy densities of the universe have fallen su�ciently
for the slope of the potential to become important again.

At this point, the evolution enter an attractor tracker solution. The ‘attractor’ nature refers to the fact that many
initial conditions converge onto the same solution. The ‘tracker’ property refers to the fact that fixed proportions
of the energy density lie in each of potential energy, kinetic energy and radiation (or matter) (28; 296; 297). The
use of tracker solutions, and additional Hubble friction to avoid overshoot, goes back a long way (for example, see
(298; 299; 300; 301; 302; 303)).

We now describe the properties of the tracker solution (mostly following the analysis of (297)). The existence of
the tracker solution relies on the presence additional contributions to energy density which redshift slower than kinetic
energy. For a generic cosmic fluid with equation of state

P = (� � 1)⇢, ⇢ ⇠ a�3�,

and so a slower redshift than kinetic energy requires � < 2. Both matter and radiation satisfy this condition. Given
the high inflationary scales, there does not appear to be an obvious candidate for stable matter at the end of inflation
(although, as possibilities, one could consider either primordial black holes or relatively heavy axions with ma < H,
which become non-relativistic shortly after the end of inflation).

Instead, we focus on the relatively universal case of initial radiation, where ⇢extra = ⇢� (note we use ⇢� to denote
any form of radiation, not just photons). There are many good candidates for such radiation (for example, gravitons,
axion-like particles or extra U(1) gauge bosons).

The Friedmann equations are

Ḣ = � 1
2M2

P

⇣
⇢� + P� + �̇2

⌘
= � 1

2M2
P

⇣
�⇢� + �̇

2
⌘
, (182)

H2 =
1

3M2
P

⇣
⇢� +

1
2
�̇2 + V(�)

⌘
, (183)

with energy conservation set by
⇢̇� = �3H

�
⇢� + P�

�
= �3H�⇢�. (184)

The attractor nature is made manifest by transforming to the variables

x =
�̇

MP

1
p

6H
, y =

r
V(�)

3
1

MPH
. (185)
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a(t)2 =
�̇2

6M2
P
. During a kination epoch, the energy density therefore drops o↵ as

⇢kination(t) / 1
a(t)6 . (181)

By comparing with ⇢ / a�3 or ⇢ / a�4 (behaviours of matter and radiation domination), we see that kinetic energy
dilutes much faster. This implies that during a fast-rolling kination phase, any initial sources of matter or radiation
will – over time – catch up with the kination energy. At this point, their additional Hubble friction can e↵ectively stop
the evolution of the field (it becomes overdamped) until the energy densities of the universe have fallen su�ciently
for the slope of the potential to become important again.

At this point, the evolution enter an attractor tracker solution. The ‘attractor’ nature refers to the fact that many
initial conditions converge onto the same solution. The ‘tracker’ property refers to the fact that fixed proportions
of the energy density lie in each of potential energy, kinetic energy and radiation (or matter) (28; 296; 297). The
use of tracker solutions, and additional Hubble friction to avoid overshoot, goes back a long way (for example, see
(298; 299; 300; 301; 302; 303)).

We now describe the properties of the tracker solution (mostly following the analysis of (297)). The existence of
the tracker solution relies on the presence additional contributions to energy density which redshift slower than kinetic
energy. For a generic cosmic fluid with equation of state

P = (� � 1)⇢, ⇢ ⇠ a�3�,

and so a slower redshift than kinetic energy requires � < 2. Both matter and radiation satisfy this condition. Given
the high inflationary scales, there does not appear to be an obvious candidate for stable matter at the end of inflation
(although, as possibilities, one could consider either primordial black holes or relatively heavy axions with ma < H,
which become non-relativistic shortly after the end of inflation).

Instead, we focus on the relatively universal case of initial radiation, where ⇢extra = ⇢� (note we use ⇢� to denote
any form of radiation, not just photons). There are many good candidates for such radiation (for example, gravitons,
axion-like particles or extra U(1) gauge bosons).

The Friedmann equations are
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Before Inflation?



Vacuum Transitions in the 
Landscape?



Early History

• Coleman de Luccia (false vacuum  decay 1980)

• Witten (bubble of nothing 1981)

• Vilenkin + Hartle-Hawking (‘creation from nothing’ 1982-3)

• Brown-Teitelboim (bubble nucleation 1987)

• Farhi-Guth-Guven (creation of universe from the lab 1990)

• Fischler-Morgan-Polchinski (Hamiltonian approach 1990)



Predictions from the landscape?

• Bubble nucleations imply open universe!

• Not possible to tunnel up from Minkowski
nor anti de Sitter.



Wave functions of the universe

space is then given in each case by

PHH(Nothing ! dS) = k HH (HdS)k
2
/ e

⇡

GH
2
dS = e+SdS (2.2) {eq:PHH}

PT(Nothing ! dS) = k T (HdS)k
2
/ e

� ⇡

GH2
dS = e�SdS (2.3) {eq:PT}

In the last relation on each line we have noted the curious fact that these solutions of the WdW
equation yield expressions which in the HH case is proportional to the positive exponential of the
horizon entropy SdS and hence to the dimension of the Hilbert space that can be built on the
horizon while in the tunneling case it is inversely proportional to the dimension of the Hilbert
space.

Note that the probability amplitude can be seen as a tunneling e↵ect considering the scale factor
a(t) as a field with the ’wrong’ kinetic term and a scalar potential V (a) = �3a+⇤a3. The tunneling
would be from ’nothing’ which would correspond to a = 0 to a 6= 0 which is the turning point of a
potential barrier of �V (a).

2.2 Bubble of Nothing

Review Witten’s BON

3 Down and Up-Tunneling Transitions

3.1 Hamiltonian approach to vacuum transitions

Let us start reviewing vacuum transitions from the Hamiltonian approach as initiated by Fischler,
Morgan and Polchinski (FMP) [11]. Starting with the spherically symmetric metric

ds2 = �N2
t dt2 + L(r, t)2(dr + Nrdt)2 + R(r, t)2d⌦2

2 (3.1)

in order to address the vacuum transition problem FMP considered the bulk-brane system with
the brane (or wall) at r = r̂ separating two regions with di↵erent cosmological constants ⇤± and
the following action:

S = Sbulk + Sbrane +

Z
d4x

p
�g (⇤+⇥(r � r̂) + ⇤�⇥(r̂ � r)) (3.2)

with standard Einstein-Hilbert Sbulk and brane action Sbrane respectively and with ⇥ the step
function.

FMP reduced the vacuum transition problem to solving for the quantum mechanics of the brane
(assumed spherically symmetric) with a wave function  (R̂) which solves the Wheeler deWitt
equation. In the leading WKB approximation this implies solving the momentum and Hamiltonian
constraints while satisfying the matching conditions at the brane.

R0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥



2
R̂ , (3.3) {eq:JunctionConditions}

3

Mini-superspace

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)
entropy

where VA = V (�A). Hence we have

B

2
= �12⇡2
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3
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�
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�
+ 2⇡2⇢̄3T + 12⇡2

Z
⌧̄��⌧

0

d⌧


⇢ � 1

3
VA⇢3

�
(4.4)

In the second line we have assumed that beyond the point ⌧̄+�⌧ , V ' VA so that the contribution
from ⌧̄ + �⌧ to ⌧max in the first term of the first line cancels against the second term. Also T in
the middle term is defined by

⇢̄3T = 2

Z
⌧̄+�⌧

⌧̄��⌧

d⌧⇢3(V (�(⌧) � VA). (4.5)

In the second line of Eq. (4.4) we have taken the path in ⌧ such that for 0 < ⌧  ⌧̄ � �⌧ , � is
held fixed at �B while in the interval ⌧̄ + �⌧  ⌧ < ⌧max, � = �A. So in the first and third terms
in Eq. (4.4) we can replace the integral over d⌧ = d⌧

d⇢
d⇢ using the Euclidean Eq. (4.1) with �

fixed7. This gives d⌧

d⇢
= ±1/

p
1 � VB,A⇢2 in the first and third terms8 so these integrations can

be done giving us (in the thin wall limit �⌧ ! 0),

B

2
= �12⇡2

"
±
�
1 � 1

3
VA⇢̄2

�3/2 � 1

VA

⌥
�
1 � 1

3
VB ⇢̄2

�3/2 � 1

VB

#
+ 2⇡2⇢̄3T. (4.6)

⇢̄ is then determined by extremising B. Upon substituting this value into the above one then
gets the usual expressions which we will quote later after re-deriving the above without invoking
Euclidean arguments with their corresponding interpretational issues.

4.2 Vacuum transitions in mini-superspace

An instructive exercise, that helps understanding the formalism outlined in Sec. 2 and shows
the di↵erences between the Lorentzian and Euclidean appproaches, consists in studying vacuum
transitions in a mini-superspace setup that includes a real scalar field. This calculation is a
generalization of the ‘tunneling from nothing’ scenario [20–23]. For a recent discussion see for
instance [34–36]. The metric is

ds2 = �N2(t)dt2 + a2(t)(dr2 + sin2 rd⌦2

2) . (4.7)

The action (setting Mp = 1/
p

8⇡G = 1) is given by the sum S = Sg + Sm, where

Sg = 2⇡2

Z
1

0

dt
�
�N�13aȧ2 + 3kaN

�
, (4.8)

Sm = 2⇡2

Z
1

0

dt

✓
N�1

1

2
a3�̇2 � Na3V (�)

◆
. (4.9)

Here k = ±1, 0 depending on whether the three-spatial slice is positively (negatively) curved
or flat. Of course in the open k = 0, �1 cases the factor 2⇡2 would have to be replaced by an

7Although not explicitly stated this seems to have been assumed also in [33].
8In [33] only the positive sign is kept here.
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tvφ φ φ
φ

V

topfv

Fig. 12.1. A typical potential with a false vacuum.

To go from the false vacuum through a series of spatially homogeneous configura-
tions would require traversing an infinite potential energy barrier. The tunneling
amplitude for this vanishes. Instead, the false vacuum decays by a tunneling pro-
cess that takes a spatially homogeneous state to one with a region of approximate
true vacuum—a bubble—embedded in a false vacuum background. Because the
bubble can be nucleated anywhere, the decay rate is proportional to the volume
of space, and thus formally infinite. The finite physically measurable quantity
that we need is the bubble nucleation rate per unit volume, Γ/V.

One can envision many paths through the space of field configurations that
connect the pure false vacuum to a configuration with a bubble. Two of these are
illustrated in Fig. 12.2. Each path specifies a series of field configurations that
define a slice through the potential energy barrier. A plot of U [φ(x)] along the
path would be similar to the one-dimensional potential energy barrier shown in
Fig. 9.3. The end point of the path, corresponding to the field configuration at
the time that the bubble nucleates, has the same potential energy as the initial,
pure false vacuum, configuration; quantum tunneling conserves energy.

As described in Chap. 9, the tunneling amplitude is dominated by the path
that minimizes the barrier penetration integral B. This path can be found by
finding the bounce solution to the Euclidean equation of motion [226], which in
the present case is the field equation

0 =
d2φ

dτ2
+ ∇2φ− dV

dφ
(12.3)

that follows from the Euclidean action1

1 Because almost all actions in this chapter will be Euclidean, I will generally omit an explicit
subscript E on the action.

              

       

12.1 Bounces in a scalar field theory 259

−V
fv φ tv

φ
φ

Fig. 12.4. The upside-down potential used in the overshoot–undershoot argu-
ment. The field begins, at s = 0, near the true vacuum peak and must finally
come to rest at φfv.

damping term, and so the particle will never have sufficient energy to reach
φfv; i.e., it undershoots. Now suppose instead that φ0 is taken to differ only
infinitesimally from φtv. It will then start to move very slowly, so that by the
time it has moved appreciably from its initial position the damping force will
have almost died away and the particle’s energy will be essentially conserved. It
will then have nonzero kinetic energy when it reaches φfv and so will continue on,
never to return; it overshoots. By continuity, there must be a range of φ0 near
the top of the potential that lead to overshoots and another range, lower down,
giving undershoots. The boundary between these two ranges gives the desired φ0

that determines the bounce. (While this argument demonstrates the existence
of a bounce, it does not prove the uniqueness of the bounce. It is not hard to
find potentials that have several ranges of overshoot and undershoot, and thus
several distinct bounce solutions.)

Assuming O(4) symmetry, the tunneling exponent from the bounce can be
written as

B = 2π2

∫ ∞

0
ds s3

[
1
2
(φ′)2 + V (φ)− Vfv

]
, (12.17)

where the factor of 2π2 is from the four-dimensional angular integration. We
can estimate the magnitude of B by scaling arguments. Let us assume that the
theory has a single characteristic mass scale m and that the scalar field potential
can be written as

V (φ) = g2v4Ṽ (φ/v) + Vfv , (12.18)

where v = m/g and the dimensionless parameters in Ṽ are all of order unity. (In
particular, this implies that |φtv−φfv| is of order v.) We can then define rescaled
variables u = ms and f = φ/v and write

              

       

Coleman et al. (Field theory (and Gravity?)

O(4) Instanton (bounce)

The solution to these equations correspond to the deformation of a and � from a point

in the false vacuum VA to the true vacuum, VB. Valid solutions to this equations are

subject to the boundary conditions imposed by the turning points ⇡a = ⇡� = 0, which

translate into , daA,B/ds = d�A,B/ds = 0. These determine then the points aA,B and �A,B

where the tunneling occurs. Note that these points are not necessarily at the true and

false vacuum as in general the boundary conditions are not satisfied there. Their precise

location depends on the the details of the potential and it might be the case that there

are no possible solutions [51]. This can be seen for example by expanding at the top of

the potential. Doing so it is possible to approximate a = sinHt. Now let us consider

homogeneus perturbations of the field ��, so we get,

��00 + 3H tan Hu��0 � V 00�� = 0 (4.22)

This equation can be solved by writing �� =
P

n
��n cos(Hnu). Reeplacing the ansatz into

the equation we get that solutions only exist if V 00 + H2n(n + 3 tan(Hnu)2) = 0. SC: It’s

still not clear to me how to interpret this. In the case of CDL one gets V 00+H2n(n+3) = 0

so it seems strange now that the condition depends on u

5 Open or Closed Universe?

As we have seen in previous sections, even though we used a very di↵erent approach to

compute the tunneling amplitude from Coleman de Luccia, we found the same expression

for the decay rate at least in the thin wall approximation. However since our approach is

Lorentzian we did not perform any analytic continuation and starting from a closed universe

we found that the spacetime geometry after the transition is also of a closed universe. This

is in contrast to the CDL case in which a series of analytic continuations lead to an open

universe after bubble nucleation. In this section we will revisit this important di↵erence.

In the case of CDL, the starting point is a Euclidean instanton that we briefly review

next for completeness.

5.1 CDL Geometry

Given two vacua �F and �T such that V (�F ) > V (�T ) � 0, according to [3] to calculate

the scalar field that interpolates between the two minima first we need to consider the

Euclidean solution that extremises the action in order to derive the remaining geometry

inside and outside the bubble. This was done in several steps:

• In field theory, the Euclidean bounce solution is O(4) invariant in such a way that

the scalar field depends on the Euclidean distance ⇠2 = |x|2 + ⌧2. Analytic contin-

uation changes this to a O(3, 1) and ⇠2 ! |x|2 � t2. Once gravity is included the

corresponding line element is assumed to share that symmetry.

• Starting with the O(4) symmetric Euclidean de Sitter metric,

ds2 = d⇠2 + ⇢2(⇠)(d 2 + sin2  d⌦2
2) (5.1)
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In the case of CDL, the starting point is a Euclidean instanton that we briefly review
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5.1 CDL Geometry

Given two vacua �F and �T such that V (�F ) > V (�T ) � 0, according to [3] to calculate

the scalar field that interpolates between the two minima first we need to consider the

Euclidean solution that extremises the action in order to derive the remaining geometry

inside and outside the bubble. This was done in several steps:

• In field theory, the Euclidean bounce solution is O(4) invariant in such a way that

the scalar field depends on the Euclidean distance ⇠2 = |x|2 + ⌧2. Analytic contin-

uation changes this to a O(3, 1) and ⇠2 ! |x|2 � t2. Once gravity is included the

corresponding line element is assumed to share that symmetry.

• Starting with the O(4) symmetric Euclidean de Sitter metric,

ds2 = d⇠2 + ⇢2(⇠)(d 2 + sin2  d⌦2
2) (5.1)
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Analytic continuation O(3,1)

and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2
2) (5.2)

where � now runs from �1 to 1. This spacetime is de Sitter foliated by timelike

hyperboloids. If we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (5.3)

whose geometry is represented by the causal diamond in fig. ??. The wall lies within

this region as indicated by the punctuated timelike surface in fig. ??. An observer in

the hemisphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible

to go past the lightlike hypersurfaces. To complete the description we can make a

further analytical continuation � ! i⇡/2 + � and ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2
2). (5.4)

This region describes an FRW open space, and covers the blue patch in fig. 9

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that

the tunneling points where �b and �a, as indicated in fig. 8. Both points are hemi-

spheres of de Sitter where ⇢ vanishes. The wall separating the two regions is inside

the causal diamond as indicated in fig 5 by the punctuated line. The region outside

the causal diamond describes the dynamics after the tunneling. Spacelike hypersur-

faces in these region represent constant field surfaces. Then after the tunneling the

field rolls down to the true vacuum V (�t) at I+. After analytic continuation the

surfaces of constant field values correspond to constant values of |x|2 � t2 which are

hyperbolae. This defines the natural foliation of the spacetime.

We have assumed that the true vacuum is de Sitter. In the case of Minkowski the

asymptotic region changes and the diagram needs to be completed with the remaining

section of the Minkowski diagram.

5.2 Lorentzian Geometry

As we have seen in the previous sections, following directly a Lorentzian approach the

spacetime geometry is established from the beginning. For simplicity we started with a

closed universe and the end result is then also a closed k = 1 LFRW metric:

ds2 = �dt2 + a2(t)d⌦2
3 (5.5)

which di↵ers clearly from the open universe conclusion of CDL. This metric is by con-

struction Lorentzian and has the O(4) symmetry corresponding to a closed universe with

no need of any analytic continuation. For a / cosh(�t) this corresponds to the SO(4, 1)

invariant closed de Sitter universe in global coordinates. In this case the natural foliation

corresponds to horizontal surfaces of constant time. See figure...
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V

Figure 1: A plot of V vs � for the scalar potential V = U(ln �)/�4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima � = �0 of this potential generically occur in the regime where �(�0) �
O(1). But if stabilization of other moduli make �g0 small, then inspection of (2.10) shows

that �0 must be very large because �g0 ln �0 � O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� �
����
U2

U3

���� � O(�) (2.12)

for some smallish � � 1. Such a hierarchy allows solutions to �V/�� |�0 = 0 for �0 � O(�)

and so

b1 ln �0 = ��1
g0 � ��1 (2.13)

can easily be order 1/� if � � �g0 and b1 < 0. For � <� 1/10 the value predicted for �0 can be

enormous �0 � e1/�, justifying the validity of the 1/� expansion ex post facto. As is easy to

check, when 9 U2
2 > 32 U1U3 the potential has a local minimum at �0 that is separated from

the runaway to � � � by a local maximum at �1 > �0 (see Fig. 1).

The value of the potential at this minimum is positive if U2
2 < 4 U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(�0) � O(�4) when

U3 � O(1), it happens that the condition V �(�0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(�0) � O(�5). As a result both V (�0)

and �2(�2V/��2)
��
�0

are O(�5|w0|2/�4
0 ), and this can be extremely small given that �0 can be
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!

"

Figure 12: Vacuum transitions in string theory. First bubble nucleation from flux/D3 brane charge transitions illustrated by the vertical arrow.
Then a CDL-like transition crossing the potential barrier illustrated by the horizontal line. In string theory this transition may correspond towards
decompactification.

vacua. From the 4-dimensional EFT, there is not a scalar potential which connects the two vacua so this cannot
be explicitly described in terms of the CDL bounce solution within the 4-dimensional EFT. But it fits nicely in
the BT formalism.

2. Transitions a la CDL are also implemented since any potential dS vacuum should coexist with the runaway
vacuum corresponding to infinite volume and vanishing string coupling. The potential for the volume modulus
connects both vacua and the transition may be estimated.

Transition rates have been estimated for type IIA [404] as well as type IIB flux compactifications (for both KKLT
and LVS) vacua [128, 405, 406]. The probability amplitude � ⇠ e�24⇡2/⇤0 where ⇤0 is the value of the scalar potential
at the dS minimum. The corresponding lifetime ⌧ ⇠ 1/� is exponentially small as compared with the Poincaré
recurrence time which is reassuring. Furthermore the transition from dS to an AdS is preferred over dS to dS and the
CDL transition towards decompactification dominates the dS to dS transitions.

An interesting observation was made in [407, 408] regarding the actual implementation of the bounce solution
in a toy model version of flux compactifications with two dS vacua plus the runaway. The claim is that not only
the decompactification transition is preferred but that the potential bounce solution connecting the two dS vacua
necessarily follows into the runaway towards decompactification providing a potential obstacle to implement the
transition. Note however that contrary to the toy model in which both transitions corresponded to the CDL type, in
flux compactifications the flux transition is of the BT type whereas the decompactification is of the CDL type.

57

Transitions in the landscape

1. Flux transitions (induced by D5/NS5 nucleation)

2. Decompactification
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� ⇠ e
�B

, B = S[instanton]� S[background] (1.1)

�up = (1.2)

HI ! 0, �down ! exp


� ⇡

2G

1

H
2
O

�
(1.3)

HO ! 0, �up ! 0 (1.4)

�flux ⌧ �decompactification e.g. �flux ⇠ e
�V2

�decompactification (1.5)
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dS to dS

In field theory there is a similar process, described by Colemann and De Luccia (CDL)

[1], of decay of false vacuum to true vacuum. However there is a very important di↵erence

between CDL and BT processes. The former is a field theory process which describes

tunneling between two minima of a potential and stops once the field reaches in its true

minimum. However the membrane nucleation will always be (may be) repeated for dS

(AdS) with the inside value of flux and CC now become a background configuration. In

this sense the BT process is more suitable for describing the string landscape.

The probability per unit volume per unit time for brane nucleation is given in terms

of B. In [2] one has a universal expression for B valid for any decay. The corresponding B

is given by

B = 2⇡2⇢3T + 12⇡2

(
1

⇤i

"
�i

✓
1�

⇤i

3
⇢2
◆3/2

� 1

#
�

1

⇤o

"
�o

✓
1�

⇤o

3
⇢2
◆3/2

� 1

#)
. (2.2)

Here �o/i = ±1 is determined from

�o = Sign


✏

3
�

T 2

4

�
, �i = Sign


✏

3
+

T 2

4

�
, (2.3)

T is the tension of the bubble wall and ✏ is defined as

✏ = ⇤o � ⇤i. (2.4)

It is also obvious from (2.3) that

�i � �o. (2.5)

The choice of �o/i gives many possibilities of decay. As we will see later, the choices which

are relevant to us are

�o = ±1, �i = +1. (2.6)

Here ⇢ is the size of the bubble and is determined by extremizing B,

⇢ =

(
⇤o

3
+

1

T 2


✏

3
�

T 2

4

�2)�1/2

. (2.7)

From (2.7), we get the following condition


✏

3
�

T 2

4

�2
� �

T 2⇤o

3
. (2.8)

Thus if we start with de Sitter space for which ⇤o > 0, then this condition is automatically

satisfied. However for ⇤o < 0 which is the case of AdS space, this inequality has to be

satisfied in order to have a brane nucleation.

The outcomes of the BT brane nucleation process are:
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no way to limit these disconnected sums and including them will simply make the whole

formalism ambiguous. Hence we simply set the coe�cients of such additional contributions

to the wave function to zero as being physically meaningless. We are only interested in

wave functions that can be interpreted as transitions mediated by our wall/brane and that

means we just keep the connected terms. A better understanding of this situation would

be desirable.

4.2 Euclidean approaches

Let us now compare our results with the standard Euclidean approach for tunnelling,

starting from the original CDL and BT and then with the FGG approach for the Minkowski

to dS transition.

BT/CDL

The original treatments on vacuum transitions were done following the standard instanton

techniques which are formulated in Euclidean space. Both CDL and BT formalisms are

Euclidean. Up-tunnelling dS to dS transitions are forbidden in CDL but not in BT (and

also Lee-Weinberg [24]) but Minkowski to dS transitions are forbidden in both CDL and

BT. Let us investigate the di↵erence. CDL and BT give the following expression for the

transition probability: P = e
�|2IBT|, where

IBT(R̂) =
⇡

4G

" 
✏(R̂0

�)

H
2

I

⇣
1�H

2

I
R̂

2

⌘3/2
�H

�2

I

!
�
 
✏(R̂0

+
)

H
2

O

⇣
1�H

2

O
R̂

2

⌘3/2
�H

�2

O

!
+ R̂

3

#
.

(4.5)

This expression is extremised (so that the probability is maximised) at R̂ = Ro with the

latter given by Eq. (2.42). If we substitute this into Eq. (4.5) we get

IBT(R̂ = Ro) =
⇡

2G

"⇥
(H2

O �H
2
I )

2 + 
2(H2

O +H
2
I )
⇤
Ro

4H2
OH

2
I

� 1

2

�
H

�2
I �H

�2
O

�
#
, (4.6)

which is exactly the same result as in Eq. (2.54), obtained using the Hamiltonian approach

for dS to dS transitions. When setting the initial Hubble parameter to zero, the transition

probability vanishes. As mentioned in the previous Subsection this result agrees with the

Hamiltonian approach in the absence of spacetimes disconnected to the wall. However,

this does not prevent up-transitions: the argument for this is that FMP and FGG, instead,

focused on another transition, i.e. Schwarzschild to dS and subsequently they took M ! 0.
18 The main di↵erence between the two approaches is that, taking the Minkowski limit in

the latter implies the vanishing of the term proportional to the black hole mass parameter;

thereby, the total action still remains finite, leading to a nontrivial transition probability.

Notice that away from the turning points our general expression (3.9) does not coincide

with the BT expression (4.5). However both equations are such that they reproduce the

same expression (4.6) upon minimisation and evaluation at the turning points. This is the

relevant comparison.

18Note that, in this case, the bulk action would have a term like 2GM✓(�R̂
0
+) ! 0 in the flat spacetime

limit.
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Euclidean approach (Coleman-de Luccia, Lee-Weinberg, Brown-Teitelboim) :
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with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)
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Analytic continuation from Euclidean to Lorentzian implies open universe  but just a 
“guess’’ (O(4) symmetry)
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An important non-trivial check of the validity of the Schwarzschild to dS calculation for

up-tunnelling is that it exactly reproduces the CDL result when applied to down-tunnelling

as we explicitly derived in the previous Section. As already discussed, the fact that the two

limits HO, M ! 0 lead to di↵erent results is a consequence of the fact that though both

background actions may be interpreted as giving the relevant entropies in the black hole

limit we get zero entropy corresponding to the entropy of the vacuum state of Minkowski

(interpreted as the log of the dimension of the non-degererate vacuum state) while the

H ! 0 limit of dS gives the entropy (i.e. log of the dimension) of the entire HIlbert space

that can be built on Minkowski space. We will discuss this further in the next Section.

FGG

The original study of the Minkowski to dS transition was performed in [3] using the Eu-

clidean formalism. A very detailed study was made of the transition probability and it

was found that the corresponding instantons are singular. Concretely the instantons corre-

spond to Euclidean manifolds over degenerate metrics. This has cast doubt on the validity

of the transition.

Here we want to emphasise that even though the validity of the use of these degenerate

metrics can be questioned, one of the merits of the subsequent work of FMP was to put

these results on firmer ground by using the Hamiltonian approach, in which case there is

no need to introduce degenerate metrics.

In summary, the advantages of Hamiltonian over Euclidean are

• Both results agree but in FMP there is no need to introduce singular geometries;

• Some explicit terms in the action are derived in FMP but introduced by hand in

FGG;

• The spacetime trajectory of the wall can be properly described in a causal diagram;

• Unitarity of the process is built-in within the formalism.

However FGG, aware of the limitations of the Euclidean approach were able to add

the right ingredients to obtain a non-zero amplitude and the fact that their result agrees

with the Hamiltonian approach makes their assumptions more robust. We conclude that

even though the original Euclidean approach for up-tunnelling from Minkowski spacetime

is subject to criticism, the fact that the subsequent Hamiltonian approach gives the same

results provide strong evidence for the validity of this approach.

4.3 Thermal/Tunnelling Approach

A further argument questioning the validity of up-tunnelling from Minkowski space goes

as follows19. Starting from dS to dS, two expressions for the amplitude can be estimated

in the Minkowski limit of one dS (HO ! 0). The first expression assumes detailed balance:

�(1)
up = �down exp


⇡

G

✓
1

H
2
I

� 1

H
2
O

◆�
= �CDL exp (SI � SO) , (4.7)

19We thank Alan Guth for a discussion of this point. See for instance [25].
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not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where @M is a time-like boundary, K is the extrinsic curvature and h is the metric induced

on the boundary. SK is the Gibbons-Hawking boundary term that needs to be added to

SEH in order to recover the correct field equation of motion when applying the variational

principle. In the above metric the bulk Einstein-Hilbert action becomes5

SEH =
1

2G

Z
drdt


2

Nt

(NrLR)0(Ṙ�NrR
0)� 2

Nt

@t(LR)(Ṙ�NrR
0)+

+
2

L
(NtR)0R0 +

Nt

L
(L2 �R

02) +
L

Nt

(Ṙ�NrR
0)2

�
. (2.3)

The canonically conjugate variables to L, R and the Hamiltonian and momentum of the

gravity theory are

⇡L =
NrR

0 � Ṙ

GNt

R, ⇡R =
(NrLR)0 � @t(LR)

GNt

, (2.4)

Hg =
GL⇡

2
L

2R2
� G

R
⇡L⇡R +

1

2G

"✓
2RR

0

L

◆0

� R
02

L
� L

#
, (2.5)

Pg = R
0
⇡R � L⇡

0

L . (2.6)

We assume that the spherical brane is located at r = r̂. The induced metric6 can be written

as

hij = gµ⌫
@x

µ

@�i

@x
⌫

@�j
, h

00
= �N

2
t + L

2(Nr + ˙̂r)2 , (2.7)

and then the determinant takes the simple form

p
h = 4⇡R̂2

p
h00 , (2.8)

where the ˆ denotes that the function R(r) has been evaluated at r = r̂. Finally, the

domain wall action is

SW = �4⇡�

Z
dtdr �(r � r̂)[N2

t � L
2(Nr + ˙̂r)2]1/2 , (2.9)

where � is the tension of the wall, while the matter action is

Smat = �4⇡

Z
dtdr LNtR

2
⇢(r) , ⇢ = ⇤O ✓(r � r̂) + ⇤I ✓(r̂ � r) , (2.10)

i.e. it just includes a cosmological constant term which takes di↵erent values on the two

sides of the wall7. The Hamiltonian and momentum constraints are

H = Hg + 4⇡LR2
⇢(r) + �(r � r̂)E = 0 , (2.11)

P = Pg � �(r � r̂)p̂ = 0 , (2.12)

5In the entire paper we denote x
0 = d

dr
x and ẋ = d

dt
x.

6We choose the gauge �
0 = t, �1 = ✓, �2 = �.

7Here and in the following we denote by a subscript I the internal region such that r < r̂, while we

denote by a subscript O the outer region such that r > r̂.
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not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where

E =

s
p̂2

L̂2
+m2 , m = 4⇡�R̂2

, p̂ = @L/@ ˙̂r , (2.13)

and the Lagrangian can be read from Eq. (2.2). Away from the domain wall (i.e. r 6= r̂)

we have from the second constraint,

⇡R =
L

R0
⇡
0

L. (2.14)

Inserting Eq. (2.14) in Eq. (2.11) (for r 6= r̂) we get

d

dr

✓
⇡
2
L

2R

◆
=

1

2G2

d

dr

"
R

✓
R

0

L

◆2

�R+
8⇡

3
G⇢R

3

#
, (2.15)

that translates into the solution

⇡L = ⌘
R

G


R

02

L2
�A↵

�1/2
, ↵ = O, I , ⌘ = ±1 , (2.16)

A↵ = 1� 2GM↵

R
�H

2
↵R

2
, H

2
↵ =

8⇡G

3
⇤↵ , (2.17)

where M↵ is an integration constant. This of course corresponds to the general solution

to the spherically symmetric metric ansatz, i.e Schwarzschild-dS (SdS). If the constant

M↵ = 0, ⇤↵ 6= 0, we have a pure dS solution and if ⇤↵ = 0, M↵ 6= 0 we have a Schwarzschild

black hole. In the static coordinate system with R as one of the coordinates, the spherically

symmetric SdS metric takes the static form:

ds
2
↵ = �A↵(R) d⌧2 +A

�1
↵ (R) dR2 +R

2
d⌦2

2 . (2.18)

Constraints and dynamics of the wall

The constraints on the domain wall are imposed by integrating Eq. (2.11) and Eq. (2.12)

from r̂ � ✏ to r̂ + ✏ leading to

R̂

L̂
(R0(r̂ + ✏)�R

0(r̂ � ✏)) = �GE , (2.19)

⇡L(r̂ + ✏)� ⇡L(r̂ � ✏) =
p̂

L̂
= 0 , (2.20)

where to get the last equality we have transformed to the rest frame of the wall so that

p̂ = 0 and E = m = 4⇡R̂2
�. We note for future reference that in the limit  ! 0 ,

AI = AO, i.e. there is not change in the geometry in the absence of the wall. Combining

Eq. (2.20) with Eq. (2.16) and then using Eq. (2.19) gives

R
0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)
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with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)

– 12 –

where Ro is the turning point (i.e. solution of V = �1) There is no initial turning point in

this case since the potential V / �R
2 which has only one turning point (see Fig. 5). So

e↵ectively the integration in Eq. (2.33) starts from R(0) = 0 analogous to the tunnelling

from ‘nothing’ case studied by HH and Vilenkin. The matching conditions are given by

R̂
0
±

L
=

1

2R̂
(H2

O �H
2
I ⌥ 

2)R̂2 ⌘ c±R̂ . (2.43)

Ro

-1

0

R

V e
ff

Figure 5: E↵ective potential for dS to dS transitions. Notice there is only one turning point.

The boundary action in Eq. (2.38) then becomes10
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In this case, for instance, the subscript ‘tp’ amounts to evaluating the integral in Eq. (2.46)

between 0 and Ro. After some algebra this becomes
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10We have used the definite integral

Z
1/

p
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dx x cos�1 xp
1� ax2

=
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✓
1� 1p

1 + a

◆
. (2.44)

Also note that cos�1(�x) = ⇡ � cos�1
x.
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Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
O the action for down-tunnelling to Minkowski is exactly the same with I ! O in the

Eq. (2.51). Observe that since the M ! 0 limit of A = 1 � 2MG/R is the same as the

H ! 0 limit of A = 1�H
2
R

2 (A ! 1) the Minkowski limit of the black hole to dS action

is the same as the dS to dS action where one of the dS’s goes to the Minkowski limit. What

is di↵erent in the two cases is the expression for the background action (which is zero in

the black hole case and is the HH or the Vilenkin wave function for the (initial) dS case

(see below).

Recall now that in dS to dS transitions there is no initial classical trajectory. This

is exactly like the tunnelling from ‘nothing’ discussion in quantum cosmology in which

solutions of the WDW equation are compared at the final (and only) turning point with

the solution to be at scale factor zero (i.e. ‘nothing’). Thus these expressions should be

interpreted as giving the probability to find the space of two dS (or dS and Minkowski)

spaces mediated by a wall compared to have ‘nothing’. We will discuss this further in

Sec. 3.

In this case, the latter configuration is the background, whose action, denoted by Ī, is

given by

I =
⌘

G

Z
⇡

0
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2

4R
q
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2
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5 . (2.52)

) I =
⌘⇡

2GH
2
O

. (2.53)

which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get

Itot

����
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#
, (2.54)

which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Same result as Euclidean approach

Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
O the action for down-tunnelling to Minkowski is exactly the same with I ! O in the

Eq. (2.51). Observe that since the M ! 0 limit of A = 1 � 2MG/R is the same as the

H ! 0 limit of A = 1�H
2
R

2 (A ! 1) the Minkowski limit of the black hole to dS action

is the same as the dS to dS action where one of the dS’s goes to the Minkowski limit. What

is di↵erent in the two cases is the expression for the background action (which is zero in

the black hole case and is the HH or the Vilenkin wave function for the (initial) dS case

(see below).

Recall now that in dS to dS transitions there is no initial classical trajectory. This

is exactly like the tunnelling from ‘nothing’ discussion in quantum cosmology in which

solutions of the WDW equation are compared at the final (and only) turning point with

the solution to be at scale factor zero (i.e. ‘nothing’). Thus these expressions should be

interpreted as giving the probability to find the space of two dS (or dS and Minkowski)

spaces mediated by a wall compared to have ‘nothing’. We will discuss this further in

Sec. 3.

In this case, the latter configuration is the background, whose action, denoted by Ī, is
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2GH
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which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get
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which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Background Hartle-Hawking

Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
O the action for down-tunnelling to Minkowski is exactly the same with I ! O in the

Eq. (2.51). Observe that since the M ! 0 limit of A = 1 � 2MG/R is the same as the

H ! 0 limit of A = 1�H
2
R

2 (A ! 1) the Minkowski limit of the black hole to dS action

is the same as the dS to dS action where one of the dS’s goes to the Minkowski limit. What

is di↵erent in the two cases is the expression for the background action (which is zero in

the black hole case and is the HH or the Vilenkin wave function for the (initial) dS case

(see below).

Recall now that in dS to dS transitions there is no initial classical trajectory. This

is exactly like the tunnelling from ‘nothing’ discussion in quantum cosmology in which

solutions of the WDW equation are compared at the final (and only) turning point with

the solution to be at scale factor zero (i.e. ‘nothing’). Thus these expressions should be

interpreted as giving the probability to find the space of two dS (or dS and Minkowski)

spaces mediated by a wall compared to have ‘nothing’. We will discuss this further in

Sec. 3.

In this case, the latter configuration is the background, whose action, denoted by Ī, is

given by
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which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get
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which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Background Vilenkin

with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.
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with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)
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Since we want to compute the relative probability for the nucleation of the spacetime
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quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two
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If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and
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Figure 11: Penrose diagrams for de Sitter space with slicing corresponding from left to right to
closed, flat and open slicings, respectively. Notice that the horizontal closed universe slicing is
global.

fig:slicings

with Nt, Nr the lapse and shift functions respectively and d⌦2
2

the line element for the 2-sphere.
The system consists of two de Sitter spaces with cosmological constants ⇤I , ⇤O separated by a
wall of tension � at r = r̂. The bulk and boundary actions are the standard gravitational ones
and the matter action is simply giving by the two cosmological constants, so the total action is:

S =
1

16⇡G

Z

M
d4x

p
�gR +

1

8⇡G

Z

@M
d3y

p
�hK + SM + SW , (5.3)

where K is the extrinsic curvature of the wall and

SM = �4⇡

Z
dtdrLNtR

2 (⇤O✓(r � r̂) + ⇤I✓(r̂ � r)) ,

SW = �4⇡T

Z
dtdr�(r � r̂)

h
N2

t � L2(Nr + ˙̂r)2
i
. (5.4)

In the above we defined T ⌘ 4⇡G� .Following the standard Dirac prescription for this Hamil-
tonian system, the Hamiltonian and momentum constraints can be found and the matching
conditions at the wall lead to an equation for the wall trajectory of the form:

˙̂R2 + V = �1; V = �R̂2

R2
0

, (5.5) {rdot}

where R̂ = R(r̂) and R0 is the turning point:

R2

0 =
4T 2

⇥
(H2

O
� H2

I
)2 + 2T 2(H2

O
+ H2

I
) + T 4

⇤ . (5.6)
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From Hamiltonian approach: O(3) symmetry, closed slicing. 
Universe inside the bubble is closed for global slicing.



(see also [13]). As a first step towards this objective we believe it is important to revisit

the original proposals for a Minkowski to dS transition.

r = 0

I+

r = 0

I+

I�

r = 0

Figure 3: The Penrose diagram including i) the combined classical trajectory (in blue) starting with the

(a) trajectory at r = 0 that reaches a turning point, ii) the corresponding tunnelling through the wormhole

(horizontal line in orange) to an expanding bubble in trajectory (b) of the same energy, iii) its further

evolution towards infinite radius. The e↵ective spacetime corresponds to patching the two shaded regions.

The green shaded area on the right corresponds to the relevant part of the Schwarzschild spacetime and

the dashed yellow area on the left to the corresponding part of the dS spacetime.

In this paper we will address this question directly by considering the nucleation of

baby universes within the four dimensional context. We will first review the Hamiltonian

argument given by FMP [8, 9] in support of the claim of Guth and collaborators on the

creation of baby universes from behind the horizon of a black hole configuration [3, 4, 14].

While these calculations were somewhat incomplete, since a certain boundary term was

not explicitly worked out (see Sec. 2.3), in the corresponding case of transitions from dS

to dS spaces this can indeed be done and explicit formulae obtained as in [15].

Next we compare these calculations with the vacuum transition probabilities obtained

by CDL [1] and BT [2] using Euclidean instanton methods. In fact the latter paper (which

is the one used by Bousso and Polchinski [10]) is more closely related to the current inves-

tigation since it involves the nucleation of a brane as in the string theory case. We find

that while CDL/BT gives zero transition probability for up-tunnelling from flat space, the

FMP calculation (in agreement with the calculation of FGG) gives a non-vanishing prob-

ability for this. We explicitly compute this amplitude in two independent ways depending

on the way we describe Minkowski space: we consider the zero cosmological constant limit

of dS and the zero mass limit of the Schwarzschild solution. In the latter case we get a

non-vanishing result but in the former case we find a vanishing transition amplitude.

We explain this discrepancy by arguing that it is due to the use of di↵erent relative

probabilities. We interpret the CDL/BT expression as coming from the (absolute value

squared of the) ratio of the Wheeler-DeWitt (WDW) wave functions for the nucleated

spacetime configuration N to the background spacetime configuration B

P =
| N |2

| B|2
, (1.1)

– 4 –

Farhi,Guth, Guven (Euclidean) +  Fischler, Morgan, Polchinski (Hamiltonian)
the laboratory’1 (see also Blau, Guth and Guendelman (BGG) [4] and references therein).

Their analysis starts from an eternal Schwarzschild black hole (S), and involves a Euclidean

instanton that mediates the transition.

R

V e
ff

(a) (b)

Ri Ro

Region I Region II Region III

Figure 1: Pictorial representation of the e↵ective potential associated to a Schwarzschild to dS transition,

see also Fig. 7. Region I and III are the classically allowed regions for the motion of the bubble wall, while

Region II is the classically forbidden region. The horizontal lines correspond to di↵erent wall trajectories

and Ri and Ro (the subscripts ‘i’ and ‘o’ stand for ‘inner’ and ‘outer’) correspond to two classical turning

points of the wall trajectory. Type (a) is a bubble that can classically expand until R = Ri and then

collapse to a singularity. Type (b) contracts from spatial infinity, reflects o↵ the second turning point and

then expands back to infinity. In the quantum version classical trajectory (a) can tunnel to (b). In the dS

to dS transitions the first turning point disappears, see Fig. 5.

In the BGG discussion the trajectories of the bubble wall with respect to the e↵ective

potential were classified into five main types, according to the value of the mass M of

the black hole. We have omitted all but the ones relevant for our discussion since we are

ultimately interested in the M ! 0 limit. In Fig. 1 the trajectory (a) corresponds to a

bubble coming out of the white hole singularity, bouncing o↵ the turning point Ri and

then collapsing to the black hole. Trajectory (b) represents a wall coming in from infinity,

reflecting o↵ the second turning point and then expanding back to infinity. Trajectory (a)

by itself does not allow for an ever expanding universe. Trajectory (b) on the other hand

allows for a continuously expanding universe but su↵ers from the Penrose theorem in the

sense that the wall surface is an anti-trapped surface and cannot escape a singularity (see

Fig. 2). Selecting a point P on the left hand side of the wall trajectory, i.e. within the dS

patch, any pair of orthogonal ingoing geodesics either hit the singularity or past asymptotic

infinity behind the horizon of the observer on the right hand side. However, FGG argued

that tunnelling between these trajectories can result in the spontaneous nucleation of an

expanding bubble at the second turning point Ro, see Fig. 3. The important feature of

the given setup enabling type (a) trajectories to be buildable is the choice of the range

1Please note that the creation of baby universes from Minkowski should not be thought as an instability

of Minkowski spacetime since the original Minkowski spacetime remains after nucleating the dS bubble.
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Tunneling

Schwarzschild to de Sitter
(HO=0)



Zero Schwarzschild mass limit
in the initial state A as P(A ! A/B � W). The transition probabilities for up- and

down-tunnelling therefore read

P(M ! M/dS�W) = exp


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4

(H2 + 2)2
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(2.64)

and
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(2.65)

respectively. The ratio between the two transitions in Eq. (2.64) and Eq. (2.65) is thus

P(M ! M/dS�W)

P(dS ! dS/M�W)
= exp


⌘
⇡

G

1

H2

�
, (2.66)

which is the ratio of the exponentials of the entropy of dS to the exponential of the entropy

of Minkowski (taken as the M ! 0 limit of a Schwarzschild black hole entropy, i.e. zero),

implying that detailed balance is correctly recovered even in the black hole case in the limit

M ! 0.

Now depending on the sign ⌘ we have two di↵erent puzzles. Take the brane tension 

to be vanishingly small  ⌧ H and consider first the case ⌘ = +1. Then Eq. (2.64) (which

is the relative probability for tunnelling from ‘nothing’ to the composite of Minkowski and

dS joined at the brane compared to remaining in the Minkowski ground state) goes over

to the HH wave function for tunnelling from ‘nothing’ to dS space. Now if we take smaller

and smaller values of H we get the well-known divergence of the HH wave function for zero

cosmological constant. This appears to mean that it is infinitely more probable to be in

a dS space with cosmological constant tending to zero than to be in the vacuum state of

Minkowski. Of course this is again a reflection of the fact that the HH wave function is

the exponential of the horizon entropy. In some sense this ratio (in the limit) then is the

probability of being in a random state of the Hilbert space built on the Minkowski vacuum

relative to being in the ground state.

On the other hand with ⌘ = �1 the same ratio gives the probability of being in dS after

tunnelling from ‘nothing’ according to Vilenkin compared to the probability of being in the

Minkowski vacuum. This ratio, in the limit of the cosmological constant of the dS space

going to zero, goes to zero. It is unclear how to interpret this. In Sec. 3 we will argue that

the dominant contribution to these relative probabilities corresponds to choosing ⌘ = +1

i.e. with the HH wave function for dS.

2.6 Schwarzschild-de Sitter to Schwarzschild-de Sitter transitions

For completeness let us briefly consider also the most general case of SdS to SdS. Taking
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at the turning points the bulk action reads
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Down-tunneling

Detailed Balance

in the initial state A as P(A ! A/B � W). The transition probabilities for up- and

down-tunnelling therefore read

P(M ! M/dS�W) = exp


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1� 
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(H2 + 2)2

◆�
(2.64)

and

P(dS ! dS/M�W) = exp
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respectively. The ratio between the two transitions in Eq. (2.64) and Eq. (2.65) is thus

P(M ! M/dS�W)

P(dS ! dS/M�W)
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
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G

1
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�
, (2.66)

which is the ratio of the exponentials of the entropy of dS to the exponential of the entropy

of Minkowski (taken as the M ! 0 limit of a Schwarzschild black hole entropy, i.e. zero),

implying that detailed balance is correctly recovered even in the black hole case in the limit

M ! 0.

Now depending on the sign ⌘ we have two di↵erent puzzles. Take the brane tension 

to be vanishingly small  ⌧ H and consider first the case ⌘ = +1. Then Eq. (2.64) (which

is the relative probability for tunnelling from ‘nothing’ to the composite of Minkowski and

dS joined at the brane compared to remaining in the Minkowski ground state) goes over

to the HH wave function for tunnelling from ‘nothing’ to dS space. Now if we take smaller

and smaller values of H we get the well-known divergence of the HH wave function for zero

cosmological constant. This appears to mean that it is infinitely more probable to be in
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Minkowski. Of course this is again a reflection of the fact that the HH wave function is
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going to zero, goes to zero. It is unclear how to interpret this. In Sec. 3 we will argue that

the dominant contribution to these relative probabilities corresponds to choosing ⌘ = +1

i.e. with the HH wave function for dS.
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where Ro is the turning point (i.e. solution of V = �1) There is no initial turning point in

this case since the potential V / �R
2 which has only one turning point (see Fig. 5). So

e↵ectively the integration in Eq. (2.33) starts from R(0) = 0 analogous to the tunnelling

from ‘nothing’ case studied by HH and Vilenkin. The matching conditions are given by

R̂
0
±

L
=

1

2R̂
(H2

O �H
2
I ⌥ 

2)R̂2 ⌘ c±R̂ . (2.43)

Ro

-1

0

R

V e
ff

Figure 5: E↵ective potential for dS to dS transitions. Notice there is only one turning point.

The boundary action in Eq. (2.38) then becomes10
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In this case, for instance, the subscript ‘tp’ amounts to evaluating the integral in Eq. (2.46)

between 0 and Ro. After some algebra this becomes
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10We have used the definite integral
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dx x cos�1 xp
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◆
. (2.44)

Also note that cos�1(�x) = ⇡ � cos�1
x.
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, B = S[instanton]� S[background] (1.1)

�up = (1.2)

HI ! 0, �down ! exp
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#
(1.3)

HO ! 0, �up ! 0 (1.4)

�flux ⌧ �decompactification e.g. �flux ⇠ e
�V2

�decompactification (1.5)
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�
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2
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42
R̂

2 (1.6)
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M=0 Schwarzschild≠ H=0 de Sitter
(Difference on background wave function)

(Minkowski ≈ Schwarzschild in the M=0 limit)



AdS to AdS

first line (and hence its parametrization) is determined by continuity and the sign of R̂0
± which is

determined by the matching conditions and fixed by the geometry on either side of r̂. It should
be also be noted that if the geometry on either or both sides has horizons then R(b) should be
replaced by the solution (horizon) to AI = 0 and R(c) by the solution to AO = 0.

In the current case dS has a horizon R2

D
= H�2

dS
while AdS has no horizon. Let us consider the

transition A ! B where A is deSitter and B is AdS. Thus (recall that H2 ⌘ 8⇡G⇤

3
is positive

for dS and negative for AdS), AO = 1 � H2

AR2 and AI = 1 � H2

BR2 = 1 + |H2

B|R2 and R̂± =
1

2

�
H2

A + |HB|2 ⌥ 2
�
R̂. The last equation implies that R̂0

�/L > 0. Thus the first term in (2.33) is
zero. Also the step function in the integral requires R to be a decreasing function of r to contribute,
and there is internal horizon in empty dS (no blackhole) R(1) = 0. So let us take a parametrisation
such that R idecreases from r̂ to r = c as above, and then increases. The latter region of course
gives no contribution to the integral. Hence we have (Note that from figure (3) that R̂0

+ is negative
and remains negative in the limit M ! 0 for all R � 0 )

SB

⇣
R̂
⌘
=

i⌘⇡

2G
(0� R̂2), SB (0) =

i⌘⇡

2G
(0). (2.34)

Note that a potetntial divergence (since AdS is non compact) is averted since the step function in
the first term of (2.33) is zero. Subracting the second equation from the first and adding the wall
contribution we thus get:

BdS�>AdS =
⌘⇡

G

(�
(H2
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B|)2 + 2(H2

A � |H2

B|)
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B |
�
)

, (2.35) {eq:BdSAdS}

with R0 given by (2.17) with the above substitution H2

B ! �|H2

B|. Also in this case there is no
constraint on the tension .

As in the case of dS to dS the configuration after the transition is actually the patching together
of the original dS with an AdS space separated by a wall. The latter will however collapse if any
matter is introduced as argued in [3]. After the collapse we will be left with a segment of dS space
bounded by an end of the world brane. On the other side of the brane there is no geometry left
and is equivalent to Witten’s bubble of nothing [7].

2.3 AdS to AdS

The AdS to AdS transitions can be analysed similarly to the previous ones. However for transitions
between AdS states there is a constraint that needs to be satisfied to guarantee that the turning
point radius R0 is real. In this case H2

I = �|HI |2 < 0, H2

O = �|HO|2 < 0. Now we have from
(2.17),

1
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q
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O|
���, (2.36) {eq:kappaconstraint}

In this case,

SB[R̂] =
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2G

h⇣
R̂2 � R2(0)
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✓(�R̂0

�) +
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✓(�R̂0

+)
i

(2.37)
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Mechanics
 (R̂) = aeI + be�I (1.6)

where I = iS is the action evaluated at R̂. For the case when one of the two exponentials dominate,
the transition rate can be written in terms of a di↵erence between two actions, similar to (1.1) but
as we will see they di↵er in important ways.

V

!"

-1

!"1 !"2

State A Barrier State B

V

!"

-1

!"1=0
!"2

Barrier State B

Figure 1: Two realisations of the potential for the bubble wall R̂. On the left, a bubble is materialised in region
A and grows until it reaches the turning point R̂1 and classically bounces but quantum mechanically can tunnel to
region B at the second turning point to continue expanding. The WKB approximation can be used in all the regions
of the potential outside and inside the barrier. This is a typical situation for black hole geometries. On the right
there is only one turning point (the first turning point has moved to zero) and the bubble materialises directly in
state B. This is a typical potential for pure dS or AdS that can be obtained by setting the black hole mass to zero
from the black hole geometry.

fig:potentialRhat

In the next sections we will provide a short summary of this prescription and its application to
explicitly compute the transition rates between vacuum states. Let us summarise our main results:

• We explicitly compute the rates for transitions between any of dS and AdS states including both
up and down tunneling and provide explicit expressions for each of the transition rates. The
cases corresponding to up-tunneling from AdS are new results whereas the others are known and
we agree with the previous results in the literature.

• We consider Minkowski spacetime M in two di↵erent limits: First, starting from pure dS with
curvature ⇤ > 0 and taking the limit ⇤ ! 0 in this case we obtain vanishing up-tunneling
transition as in the Euclidean case. Second, we start with a AdS spacetime with curvature ⇤ < 0
and take the limit ⇤ ! 0. In this case we get a finite transition amplitude. We interpret the
results by noticing that in the dS limit case, the entropy S / 1/

p
⇤ ! 1 whereas in the AdS

limit case the background contribution in AdS vanishes which corresponds to a vanishing entropy
for AdS which is inherited in the Minkowski limit.

4

Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0

+

are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.

For down tunneling we then have B = 2IW:
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Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that

PAdS!AdS

up = PAdS!AdS

down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.

2.4 Minkowski to AdS

First let’s look at the expression for the bubble radius (2.17) Taking the limit H0 ! 0 we get after
putting H2

I ! �|H2

I |
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.

Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
H2

I ! �|H2

I | we get for the tunneling exponent,

B = 2
�
Itot|tp � Ī

�
= � ⌘⇡

2G|HI |2


24

(|HI |2 � 2)2

�
, (2.40) {eq:MAdS}

In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡

2G
1

H2

0

and Ī = ⌘⇡
2G

1

H2

0

so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:

1

2
B = Ib = � ⌘⇡

4G|HI |2


24

(|HI |2 � 2)2

�
(2.41) {eq:MAdS2}

in agreement with (2.40) as expected.
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Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0
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are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.
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Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that
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down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.
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Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
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I | we get for the tunneling exponent,
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In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡
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0

and Ī = ⌘⇡
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so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:
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B = Ib = � ⌘⇡
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in agreement with (2.40) as expected.
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AdS to dS

There is however a puzzling issue with regard to these transition probabilities P(M ! AdS) ⇠
e�|B|. This is the fact that the transition probability goes to unity the deeper the AdS minimum
is i.e. in the limit |HI |2 ! 1! This seems bizzare since it means the Minkowski space is unstable
to decaying to the deepest (in the EFT this would mean |⇤|1/4 . MP (or the string or KK scale if
the theory is compactified string theory).

2.5 AdS to dS/M

In order to avoid potential problems with the parametrization in this case, one needs to consider
it as uptunneling to dS (A) from an AdS black hole in the the limit M ! 0 (B). The latter is
essentially the same as that studied by FMP. Since both Minkowski and AdS have no horizon the
calculation in the Appendix (which is a reproduction of the FMP one) for the small mass case iii
applies and so from eqn. (5.4) (setting R1 = Rs = M = 0,

SBu (R2 = R0)� SBu(R1 = 0) = � i⌘⇡

G

�
H�2

A

�
. (2.42) {eq:FMP3}

In this case there is no constraint on the tension  and adding the wall term we get.

BAdS�>dS =
⌘⇡

G

(�
(|H2

B|+ H2

A)
2 + 2(�|H2

B|+ H2

A)
 

Ro

4|H2

B|H2

A

+
1

2

✓
1

H2

A

� 1

|H2

B|

◆)
, (2.43) {eq:BAdSdS}

with R0 again given by (2.17) with the substitution H2

B ! �|H2

B|.
For |H2

B| > |HA|2 and small  the factor in parentheses in the expression above for B is positive, so
choosing ⌘ = �1 we get an exponentially suppressed tunneling probability and hence an exponen-
tially enhanced lifetime and so gravitational collapse is exponentially more likely than tunneling
to dS. However this depended on the choice of ⌘ = �1 which is not what one chose for the dS to
dS case, where the issue was settled (as discussed in section 3 of [14]), by arguing that this choice
(which corresponds to the HH wave function rather than the tunneling one), gives the dominant
contribution to the wave function (and indeed was consistent with detailed balance). Here we can-
not make the same argument since that calculation depended crucially on the compactness of the
spatial sections of dS.

On the other hand detailed balance holds (see below) as in the dS to dS case for the ⌘ = 1 case. In
this case this quantum transition is exponentially more probable than the gravitational collapse of
AdS. Then we have a situation where the AdS can tunnel to a configuration of AdS separated by
a wall/brane from a dS space with the AdS eventually collapsing leaving behind a dS bounded by
a end of the world brane.

However it should be noted that the ‘Minkowski’ limit HA ! 0 is in fact divergent BAdS�>dS !
⌘⇡
2G

1

H2

A
! ±1. This is to be expected since the limit is taken from the amplitude for transition to

a dS space whose horizon and hence entropy diverges as the dS radius goes to infinity. This is in
contrast to the corresponding uptunneling from AdS to a Minkowski space (M) which is the limit
of the AdS radius going to infinity. Note that this limit has the same topology as M in contrast to
the infinite radius limit of dS which still has the topology of a sphere.
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Minkowski limit from dS blows-up but from AdS is finite!?

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get

BAdS�>dS ! ⌘⇡

G

(�
(|H2

B|)2
 
2/|H2

B|
4|H2

B
|H2

A

+
1

2

✓
1

H2

A

+ 0

◆)
=

⌘⇡

2G

1

H2

A

.

That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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To Nothingness and Back?
of the spatial sections of AdS) is not valid since as we saw earlier the FMP bulk contribution is
zero at the tunning points so that the tunneling amplitude is actually finite.

Actually, the limit for HO ! 1 falls beyond the validity of the EFT. However we may consider
it formally by just assuming HO � HI, M, . Simple inspection of equations (3.12) show that the
wall contribution to the action is imaginary and therefore does not contribute to the amplitude and
we are left essentially with the transition determined by the bulk contribution:

B '
⌘⇡

2G
R2

dS =
⌘⇡

2G

1

H2
I

(6.9)

. This is precisely the (log of the) HH (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1) tunneling
factor for creating a universe from nothing!

We could have also seen this naively as follows: take the limit |H2
O| ! 1 first in (3.14) (with

H2
O ! �|H2

O| which gives R0 ! 2/|H2
O|) and then substituting in (??) we get
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O|H
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I

. (6.10) {eq:nothing}

Again, we do not need to just set HO ! 1 but just assume that HO � HI, M,  and perform
the integrals numerically. We illustrate this in the figures:

Add figures for this limit

Thus contrary to the claim of [5] we can reproduce the tunneling from nothing picture of HH
and V/L by interpeting nothing as deep AdS as they did! It is interesting to note that even
though the bubble radius goes to zero in this limit (which normally would have been interpreted
as signalling the absence of tunneling) there is a cancellling singularity in B resulting in a finite
tunneling probability.

7 The brane trajectory after nucleation

The metric on the brane is
ds2 = �dt2 + R̂2(t)d⌦2 (7.1) {eq:brane-metric}

The first (energy) integral of the equation of motion for the brane is (from now on we’ll drop the
hat on R in this section since we are just discussing the brane motion),

Ṙ2 + V = �1, (7.2) {eq:brane-eom}

where the potential may be written as

V = �
1

(2R)2
�
(AI � AO) + 2R2

�
+ AI � 1. (7.3) {eq:V}

In the case of interest (i.e, AdS black hole to dS),

AI = 1� H2
I R2, AO = 1�

2GM

R
+ H2

OR2,
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The same as Vilenkin, Hartle-Hawking wave functions!
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This is the central claim of this paper. We spend the remainder of this section justifying

this claim, first by showing that this limit is smooth, and, second by showing that this is not

a special feature of the 6D Einstein-Maxwell theory and in fact holds in all compactifications

that admit a bubble of nothing.

extra dimensions

r

extra dimensions

r

extra dimensions

r

extra dimensions

r

Figure 6: A sequence of tunneling instantons that discharge di↵erent amounts of flux. The more charged
branes in the stack, the more units of flux are discharged, and the smaller the size of the extra dimensions
inside the bubble. In the limit that all the flux is discharged, the area-radius of the bubble stays nonzero,
but the size of the extra dimensions inside the bubble goes to zero. This is the bubble of nothing, and can
be compared with Fig. 1. The exact instanton profiles are computed numerically in [10]; this figure shows
the qualitative behavior.

2.2.3 Bubbles of next-to-nothing

The bubble of nothing is the limit of flux tunneling in which all the flux is discharged; despite

being topology-changing, it is the limit of a family of transitions that are topology-preserving.

In what sense is this limit smooth?

For thin branes, the flux tunneling instantons amongst the vacua of the 6D Einstein-

Maxwell model break up into three parts: a false-vacuum exterior, a true-vacuum interior,

9

For SAdS to dS

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get

BAdS�>dS ! ⌘⇡

G

(�
(|H2

B|)2
 
2/|H2

B|
4|H2

B
|H2

A

+
1

2

✓
1

H2

A

+ 0

◆)
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2G

1
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A

.

That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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Transitions: Standard Lore

M1 to M2
Anti de Sitter Minkowski de Sitter

Anti de Sitter
Yes

(bound on wall 
tension)

No No

Minkowski
Yes _ No

de Sitter
Yes Yes Yes

Bubble Universe is open!



From Hamiltonian Approach
M1 to M2

Anti de Sitter Minkowski de Sitter

Anti de Sitter Yes
(bound on wall 
tension)

Yes? Yes?

Minkowski Yes _ Yes ?

de Sitter Yes Yes Yes

Bubble Universe is open, closed! 
(‘nothing’ of bubble of nothing = ‘nothing’ of creation out of nothing!?)



Summary of transitions

• Schwarzschild M=0 to dS allowed

• AdS Schwarschild M=0 to (A)dS also allowed

• Entropy of Minkowski/AdS is 0 or ∞?

• Transition from 𝜦 → −∞ to dS same as HH/Vilenkin universe from nothing!

• Universe after transition open or closed?!

• Hamiltonian approach very limited!



Conclusions

• Moduli fields: low energy remnants from string compactifications

• Inflaton candidates

• Change post-inflation cosmology

• Source string landscape: dark energy

• Vacuum transitions in landscape: theoretical lab for quantum aspects of gravity

• Ultra high frequency gravitational waves: the future!

• Many open questions (EFT of alternatives to inflation, general Hamiltonian approach to vacuum 

decay, fully trustable de Sitter, spatial curvature of our universe,…)



SAdS to dS

This can be easily seen by the conditions coming from the expression of the potential at the turning
points ÂI = 1 � H2

I R2 > 0 implying RI,O  RdS and ÂO = 1 � 2GM/R + H2
OR2 > 0 which by

looking at the coe�cients determining the single root of the cubic, it can seen that it implies
RS  RI,O.

Also to define the domains for the integration parameter M we compute it first for the case
R0

+ = 0, V = �1 which implies gives the value for M :

M = MS =
H2

O + H2
I + 2

2G
�
H2

I + 2
�3/2 , for R0

+ = 0, V = �1 (6.6)

For the case R0
� = 0, V = �1 we get

M = MD =
H2

O + H2
I � 2

2GH3
I

, for R0
� = 0, V = �1 (6.7)

Notice that for HO = 0 this reduces to the FMP results as it should. It is also easy to prove that,
as in the FMP case, MD  MS.

Therefore we have the same situation as in the Schwarzschild to dS transition in which the bulk
contribution to the transition rate is determined by:
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����
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����
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=

8
><

>:

⌘⇡
2G(R
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O � R2

I ) , M > MS ,
⌘⇡
2G(R

2
O � R2

S) , MS > M > MD ,
⌘⇡
2G(R

2
dS � R2

S) , MD > M .

(6.8) {eq:SB3}

Add figures to explain these results

As in FMP we are interested in the latest case MD > M to take the small M limit. As in there
we may take the limit M ! 0 which actually means M ! Mp which is when we can have a black
hole in the EFT regime.

So we have explicitly a non zero transition rate from AdS black hole to dS which is interesting
by itself. The interesting questions to ask is how the whole transition rate depends on the values
of the parameters M, HI, HO, . In particular if it prefers transitions to smaller or higher values of
HI for a fixed HO or viceversa. Also analyse the transition rate in the extreme cases H~mI,O ! Mp

from below and M ! Mp from above. This should be done numerically combining the bulk and
the wall contributions to the transition rate.

Insert here Francesco’s plots on the numerical integrations...

6.3 Up-tunneling and Creation from Nothing

Now Brown and Dahlen [5] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point fort the “no-boundary wave
function HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
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Need numerical estimates for wall contribution but the transition is 
allowed however detailed balance is OK only for MD>M (?)
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tunneling factor for creating a universe from nothing!
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regarding the wave function of the universe interpretation as creation from nothing. But contrary
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from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.
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arguments mentioned earlier.
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