On Vacuum Transitions and the String Landscape

Fernando Quevedo University of Cambridge/CERN

> CERN TH Colloquium February 14 2024

Recent detailed reviews:

M.Cicoli, J. Conlon, A. Maharana, S. Parameswaran, FQ, I. Zavala <u>2303.04819</u> Phys Reports 1059 (2024) 1-155 L. McAllister, FQ (Handbook on Quantum Gravity) <u>2310.20559</u>

Recent work on vacuum transitions:

S. Cespedes, S. de Alwis, F. Muia, FQ 2307.13614, Phys. Rev. D 104 (2021) 2, 026013 2011.13936 also work with V. Pasquarella

'Standard Model of Cosmology'

ЛСDМ

*A***: Cosmological constant**

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

 $\Lambda = 0$ Minkowski spacetime $\Lambda > 0$ de Sitter spacetime $\Lambda < 0$ Anti-de Sitter spacetime

 $\Lambda \simeq +10^{-120} M_{Planck}^4$ $M_{Planck} = \sqrt{\frac{\hbar c}{G}} \simeq 10^{19} \text{GeV}$

CDM: Cold dark matter

New kind of Matter \neq quarks, leptons

Dark: Electrically neutral

Cold: v<<c

Gravitationally (weakly?) interactive

Open Problems in Theoretical Cosmology

- Big bang
- Origin of inflation (or alternatives)
- **Dark energy** $\Lambda \simeq +10^{-120} M_{Planck}^4$ $w_{DE,0} = -1.028 \pm 0.032$.
- Dark matter
- Baryogenesis...
- Lack of underlying theory

Strings and Cosmology

- **Big Bang?** (before inflation?)
- Inflation or alternatives
- After Inflation ((P)Reheating, dark matter, baryogenesis,...)
- Today (dark energy)
- Future?

Low energy states in string theories

Theory	Dimension	Supercharges	Massless Bosons
Heterotic	10	16	$g_{_{MN}},B_{_{MN}},\phi$
$E_8 \times E_8$			$A^{ij}_{_M}$
Heterotic	10	16	$g_{_{MN}},B_{_{MN}},\phi$
<i>SO</i> (32)			$A^{ij}_{_M}$
Type I	10	16	$g_{_{MN}},\phi,A_{_M}^{ij}$
<i>SO</i> (32)			$C_{_{MN}}$
Type IIA	10	32	$g_{_{MN}},B_{_{MN}},\phi$
			$C_{_M}, C_{_{MNP}}$
Type IIB	10	32	$g_{_{MN}},B_{_{MN}},\phi$
			$C, C_{_{MN}}, C_{_{MNPQ}}$
M-Theory	11	32	$g_{_{MN}}, B_{_{MN}}, C_{_{MNP}}$

Unique theory. No free parameters !

String Compactification and Brane Worlds

10D IIB String EFT

$$S_{10}^{(0)} = \frac{1}{2\kappa_{10}^2} \int \sqrt{-g} \left(\mathcal{R} - \frac{|\nabla \tau|^2}{2(\operatorname{Im} \tau)^2} - \frac{|G_3|^2}{12\operatorname{Im} \tau} - \frac{|F_5|^2}{4\cdot 5!} \right) + \frac{1}{8i\kappa_{10}^2} \int \frac{C_4 \wedge G_3 \wedge \overline{G}_3}{\operatorname{Im} \tau} \,,$$
$$G_3 := F_3 - \tau H_3 \qquad F_3 := \mathrm{d}C_2 \,, \qquad H_3 := \mathrm{d}B_2 \,,$$
$$\tilde{F}_5 := \mathrm{d}C_4 + \frac{1}{2}B_2 \wedge F_3 - \frac{1}{2}C_2 \wedge H_3 \,, \qquad \tau := C_0 + ie^{-\phi} \,.$$

4D Compactifications

 $ds^{2} = g_{\mu\nu}(x) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} + g_{mn}(y) \mathrm{d}y^{m} \mathrm{d}y^{n} ,$

Vacuum solutions

$$R_{\mu\nu} = R_{mn} = 0$$

Flat 4D Minkowski and flat directions: moduli

What are the moduli fields?

The String Landscape

Moduli Stabilisation

Review: McAllister, FQ e-Print: 2310.20559 [hep-th]

Status of moduli stabilisation

4-cycle size: T (Kahler moduli)

3-cycle size: U (Complex structure moduli)

+ string dilaton S

Three related questions

Sources of moduli potentials

R: typical scale of extra dimensions

Dine Seiberg Problem

Dine, Seiberg 1985

Flux compactifications

e.g. KKLT/LVS Scenarios

Warning: The control status of these approaches is under heated debate !

Century old Moduli Problem

Q: Why we do not see the extra dimensions? A: Because they are too small to be seen Kaluza, Klein 1920s

Q: Why are they so small?

A1: We don't know! (20th century)

A2: A combination of fluxes and quantum corrections fix the moduli and/or we may live on a 'brane' (21st century)

The multiverse

Bubble nucleation

Expanding bubbles within bubbles

Our universe = one of many bubbles

The String Landscape and Dark Energy

- Anthropic prediction $\Lambda \sim 10^{-120}$ (Weinberg 1987)
- Evidence for Dark Energy (1998)
- Concrete proposal (Bousso-Polchinski 2000)
- Explicit String realizations (KKLT, LVS,... 2003+)*

The worst solution to the dark energy problem with the exception of all the others!!!

String Inflation

String Inflation

String model	n _s	r
Fibre Inflation	0.967	0.007
Blow-up Inflation	0.961	10^{-10}
Poly-instanton Inflation	0.958	10 ⁻⁵
Aligned Natural Inflation	0.960	0.098
<i>N</i> -Flation	0.960	0.13
Axion Monodromy	0.971	0.083
D7 Fluxbrane Inflation	0.981	5×10^{-6}
Wilson line Inflation	0.971	10 ⁻⁸
$D3-\overline{D3}$ Inflation	0.968	10 ⁻⁷
Inflection Point Inflation	0.923	10 ⁻⁶
D3-D7 Inflation	0.981	10 ⁻⁶
Racetrack Inflation	0.942	10 ⁻⁸
Volume Inflation	0.965	10 ⁻⁹
DBI Inflation	0.923	10 ⁻⁷

Planck/BICEP 2021

 $[r_{0.05} < 0.036 \text{ at } 95\% \text{ confidence}] \quad n_{\rm s} = 0.965 \pm 0.004$

Challenges: eta problem, scales (KL problem), moduli stabilisation, observations?

After String Inflation

Moduli Domination

Kination: Kinetic Domination?

Dark Matter ?

- Moduli
- Axions (QCD, fuzzy,...)
- WIMPS
- Primordial black holes
- Hidden sectors (e.g. other branes)

Dark Radiation ?

- Axions (ultra light)
- Hidden sector much constrained !!!

ΔN_{eff} <0.2 !

Oscillons/Oscillatons

GW spectrum: KKLT

 $f_{0,\mathrm{peak}} \sim 10^9 \,\mathrm{Hz}$

$$\Omega_{\rm GW,0}(f_{0,\rm peak}) \sim 3 \times 10^{-11}$$

GW spectrum: Blow-up LVS

Alternative Histories of the Universe?

Before Inflation?

Vacuum Transitions in the Landscape?

Early History

- Coleman de Luccia (false vacuum decay 1980)
- Witten (bubble of nothing 1981)
- Vilenkin + Hartle-Hawking ('creation from nothing' 1982-3)
- **Brown-Teitelboim** (bubble nucleation 1987)
- Farhi-Guth-Guven (creation of universe from the lab 1990)
- Fischler-Morgan-Polchinski (Hamiltonian approach 1990)

Predictions from the landscape?

• Bubble nucleations imply open universe!

• Not possible to tunnel up from Minkowski nor anti de Sitter.

Wave functions of the universe

Mini-superspace

$$ds^{2} = -N^{2}(t)dt^{2} + a^{2}(t)(dr^{2} + \sin^{2} r d\Omega_{2}^{2})$$

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)

$$\mathcal{P}_{\rm HH}(\text{Nothing} \to dS) = \|\Psi_{\rm HH}(H_{\rm dS})\|^2 \propto e^{\frac{\pi}{GH_{\rm dS}^2}} = e^{+S_{\rm dS}}$$
$$\mathcal{P}_{\rm T}(\text{Nothing} \to dS) = \|\Psi_{\rm T}(H_{\rm dS})\|^2 \propto e^{-\frac{\pi}{GH_{\rm dS}^2}} = e^{-S_{\rm dS}}$$

Vacuum Transitions

The beginning and end of our universe?

Euclidean Approach

Coleman et al. (Field theory (and Gravity?)

O(4) Instanton (bounce)

$$\xi^2 = |x|^2 + \tau^2$$
 $ds^2 = d\xi^2 + \rho^2(\xi)(d\psi^2 + \sin^2\psi d\Omega_2^2)$

Analytic continuation O(3,1)

 $ds^{2} = -dt^{2} + \rho^{2}(-i\xi)(d\chi^{2} + \sinh^{2}\chi d\Omega_{2}^{2}).$

Open FLRW geometry!

Transitions in the landscape

Euclidean approach (Coleman-de Luccia, Lee-Weinberg, Brown-Teitelboim) :

$$\Gamma \sim e^{-B}, \qquad B = S[instanton] - S[background]$$

$$B = \frac{\pi}{2G} \left[\frac{\left[(H_{\rm O}^2 - H_{\rm I}^2)^2 + \kappa^2 (H_{\rm O}^2 + H_{\rm I}^2) \right] R_{\rm o}}{4\kappa H_{\rm O}^2 H_{\rm I}^2} - \frac{1}{2} \left(H_{\rm I}^{-2} - H_{\rm O}^{-2} \right) \right]$$
$$R_{\rm o}^2 = \frac{4\kappa^2}{(H_{\rm O}^2 - H_{\rm I}^2)^2 + 2\kappa^2 (H_{\rm O}^2 + H_{\rm I}^2) + \kappa^4}$$

Analytic continuation from Euclidean to Lorentzian implies open universe but just a "guess" (O(4) symmetry)

Up-Tunneling and Minkowski limit

Detailed balance

$$\Gamma_{\rm up} = \Gamma_{\rm down} \exp\left[\frac{\pi}{G} \left(\frac{1}{H_{\rm I}^2} - \frac{1}{H_{\rm O}^2}\right)\right] = \Gamma_{\rm CDL} \exp\left(S_{\rm I} - S_{\rm O}\right)$$
 entropies

For HH sign only!

De Sitter to Minkowski ?

$$H_I \to 0, \qquad \Gamma_{\rm down} \to \exp\left[-\frac{\pi}{2G} \frac{\kappa^4}{H_O^2 \left(H_O^2 + \kappa^2\right)^2}\right]$$

 $H_O \to 0, \qquad \qquad \Gamma_{\rm up} \to 0$

Guth et al. : possible but need singular instantons.

Hamiltonian Approach

Fischler, Morgan, Polchinski 1990

Metric
$$ds^2 = -N_t^2(t,r)dt^2 + L^2(t,r)(dr + N_r dt)^2 + R^2(t,r)d\Omega_2^2$$
, Spherically symmetric

Action
$$S_{\text{tot}} = \frac{1}{16\pi G} \int_{\mathcal{M}} d^4 x \sqrt{g} \,\mathcal{R} + \frac{1}{8\pi G} \int_{\partial \mathcal{M}} d^3 y \sqrt{h} \,K + S_{\text{mat}} + S_{\text{W}}$$

 $S_{\rm W} = -4\pi\sigma \int dt dr \,\delta(r-\hat{r}) [N_t^2 - L^2(N_r + \dot{\hat{r}})^2]^{1/2} \qquad S_{\rm mat} = -4\pi \int dt dr \,LN_t R^2 \,\rho(r) \,, \qquad \rho = \Lambda_{\rm O} \,\theta(r-\hat{r}) + \Lambda_{\rm I} \,\theta(\hat{r}-r)$

Conjugate variables

$$\pi_{L} = \frac{N_{r}R' - \dot{R}}{GN_{t}}R, \qquad \pi_{R} = \frac{(N_{r}LR)' - \partial_{t}(LR)}{GN_{t}},$$
$$\mathcal{H}_{g} = \frac{GL\pi_{L}^{2}}{2R^{2}} - \frac{G}{R}\pi_{L}\pi_{R} + \frac{1}{2G}\left[\left(\frac{2RR'}{L}\right)' - \frac{R'^{2}}{L} - L\right]$$
$$P_{g} = R'\pi_{R} - L\pi'_{L}.$$

Constraints

$$\mathcal{H} = \mathcal{H}_g + 4\pi L R^2 \rho(r) + \delta(r - \hat{r}) E = 0,$$

$$P = P_a - \delta(r - \hat{r}) \hat{p} = 0,$$

$$E = \sqrt{\frac{\hat{p}^2}{\hat{L}^2} + m^2}, \qquad m = 4\pi\sigma\hat{R}^2, \qquad \hat{p} = \partial\mathcal{L}/\partial\dot{r}$$

De Sitter Slicings

From Hamiltonian approach: O(3) symmetry, closed slicing. Universe inside the bubble is closed for global slicing.

Schwarzschild to de Sitter (H_o=0)

Farhi, Guth, Guven (Euclidean) + Fischler, Morgan, Polchinski (Hamiltonian)

Zero Schwarzschild mass limit

(Minkowski \approx Schwarzschild in the M=0 limit)

M=0 Schwarzschild ≠ H=0 de Sitter (Difference on background wave function)

Detailed balance if Entropy of AdS = 0 !

AdS to dS

$$B^{\text{AdS}->\text{dS}} = \frac{\eta\pi}{G} \left\{ \frac{\left\{ (|H_B^2| + H_A^2)^2 + \kappa^2 (-|H_B^2| + H_A^2) \right\} R_{\text{o}}}{4\kappa |H_B^2| H_A^2} + \frac{1}{2} \left(\frac{1}{H_A^2} - \frac{1}{|H_B^2|} \right) \right\},$$

$$\frac{P^{\text{AdS} \to \text{dS}}}{P^{\text{dS} \to \text{AdS}}} = \frac{e^{B^{\text{AdS} \to \text{dS}}}}{e^{B^{\text{dS} \to \text{AdS}}}} = \frac{\exp\left(\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)}{\exp\left(-\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)} = e^{\eta(S_{\text{dS}} - (S_{\text{AdS}} = 0))},$$

Detailed balance if AdS entropy=0!

Minkowski limit from dS blows-up but from AdS is finite!?

To Nothingness and Back?

The same as Vilenkin, Hartle-Hawking wave functions!

Transitions: Standard Lore

M_1 to M_2	Anti de Sitter	Minkowski	de Sitter
Anti de Sitter	Yes (bound on wall tension)	No	No
Minkowski	Yes	_	No
de Sitter	Yes	Yes	Yes

Bubble Universe is open!

From Hamiltonian Approach

M_1 to M_2	Anti de Sitter	Minkowski	de Sitter
Anti de Sitter	Yes (bound on wall tension)	Yes?	Yes?
Minkowski	Yes	_	Yes ?
de Sitter	Yes	Yes	Yes

Bubble Universe is open, closed! ('nothing' of bubble of nothing = 'nothing' of creation out of nothing!?)

Summary of transitions

- Schwarzschild M=0 to dS allowed
- AdS Schwarschild M=0 to (A)dS also allowed
- Entropy of Minkowski/AdS is 0 or ∞ ?
- Transition from $\Lambda \rightarrow -\infty$ to dS same as HH/Vilenkin universe from nothing!
- Universe after transition open or closed?!
- Hamiltonian approach very limited!

Conclusions

- Moduli fields: low energy remnants from string compactifications
- Inflaton candidates
- Change post-inflation cosmology
- Source string landscape: dark energy
- Vacuum transitions in landscape: theoretical lab for quantum aspects of gravity
- Ultra high frequency gravitational waves: the future!
- Many open questions (EFT of alternatives to inflation, general Hamiltonian approach to vacuum decay, fully trustable de Sitter, spatial curvature of our universe,...)

SAdS to dS

$$I_{\rm B}\Big|_{\rm tp} \equiv I_{\rm B}\Big|_{R_{\rm I}}^{R_{\rm O}} = \begin{cases} \frac{\eta\pi}{2G} (R_{\rm O}^2 - R_{\rm I}^2) \,, & M > M_{\rm S} \,, \\ \frac{\eta\pi}{2G} (R_{\rm O}^2 - R_{\mathcal{S}}^2) \,, & M_{\rm S} > M > M_{\rm D} \\ \frac{\eta\pi}{2G} (R_{\rm dS}^2 - R_{\mathcal{S}}^2) \,, & M_{\rm D} > M \,. \end{cases}$$

$$M_{\rm S} = \frac{H_{\rm O}^2 + H_{\rm I}^2 + \kappa^2}{2G \left(H_{\rm I}^2 + \kappa^2\right)^{3/2}}, \qquad \qquad M_{\rm D} = \frac{H_{\rm O}^2 + H_{\rm I}^2 - \kappa^2}{2G H_{\rm I}^3},$$

Need numerical estimates for wall contribution but the transition is allowed however detailed balance is OK only for M_D>M (?)

$$\frac{P^{\text{AdS} \to \text{dS}}}{P^{\text{dS} \to \text{AdS}}} = \frac{e^{B^{\text{AdS} \to \text{dS}}}}{e^{B^{\text{dS} \to \text{AdS}}}} = \frac{\exp\left(\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)}{\exp\left(-\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)} = e^{\eta(S_{\text{dS}} - (S_{\text{AdS}} = 0))},$$