

Development of the MOSAIX chip for the ALICE ITS3 upgrade

TWEPP, Glasgow, Scotland. October 2nd 2024

Pedro Vicente Leitao, CERN, Switzerland

On behalf of the MOSAIX design team and the ALICE collaboration

ALICE ITS

ALICE ITS2 half inner barrel

What can we do better?

Everything is on-chip: silicon-only pixel detector

24 mm from the beam pipe 0.35 % X_0 per layer

19 mm from the beam pipe $0.07 \% X_0$ per layer

What are the challenges?

Everything is on-chip

Power distribution on-chip Data communication on-chip No active cooling Manufacturing defects

Design a large area silicon-only bent pixel detector

Max reticle size

split design

Only possible if the technology allows stitching

A = sensitive area

* see Gregor Eberwein's talk on how interesting these type of faults can be

ITS3 detector

Wafer scale stitched pixel sensor prototypes

14 mm

Study yield and uniformity of large sensing areas Characterization of pixel frontends

Two different goals

Study detach of pixel groups from the global power grid via switches Gb/s on-chip data transmission

Enlarged spacing design Coarse power modularity

Two different approaches regarding defects

Minimum spacing design Fine power modularity

MOST

2.5 mm

MOSAIX is the full size, fully functional, stitched sensor prototype for the ITS3

93 % sensitive region 0.7 % sensor area modularity 144 tiles (independent units)

4.4 MHz/cm² particle rate 30.72 Gb/s off-chip data transmission minimum 2 μs integration time < 40 mW/cm² 10¹³ NIEL (1 MeV neq cm⁻²) 10 kGray TID Triple modular redundancy

20.8 x 22.8 µm² pixel size Detection Efficiency > 99 % Fakehit rate < 0.1 pixel⁻¹s⁻¹

/	4	<	٥	â	û	û	û	û	û	â	0	ũ	û	e d	
/	h	0		L.	1.	6.	5.		u	LL.	L.	L.	L.		
//	x	æ	- +		- +	- +	- +	- +	- +	- +	- +	- +	- +	₩ + 3	
	т	a	u +	u +	w +	- +	- +	- +	w +	w +	w +	- +	w +	w 4 I	
	Ŧ														
	x	a	- +	u +	- +	- +	- +	- +	- +	- +	- +	- +	- +	w + 3	
	Ŧ	6	× +	w +	~ +	- +	~ +	~ +	~ +	- +	- +	~ +	- +	w 4 - X	
	٩L	~	۵	٥	٥	۵	ů.	0	۵	0	D.	ů.	ů.	۵ U	
\	- Air	0			u.	5.		h		u.	6				
	1														. 7

CERN ALICE

9.8 mm

3.5 mm

power switches allow to connect the tile to the global power domain

* see Szymon Bugiel's talk on how to reliably distribute power in the MOSAIX chip

20.8 μm (r-phi) by 22.8 μm (z-axis)

RSU

		Periphery		Periphery	Periphery				Periphery		Periphery	Periphery		
stitched hackhone	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	stitched backbone	SMITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	
		Unit bias		Unit bias		Unit bias		F	Unit bias		Unit bias	F	Unit bias	
stitched backhone	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	stitched backbone	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	
US NO	Periphery		Periphery			Periphery			Periphery		Periphery		Periphery	

		Periphery	Periphery		Periphery			Periphery		Periphery	Periphery		
stitched hackhone	SWITCHES	Pixel Matrix	Pixel Matrix	SWITCHES	Pixel Matrix	stitched backbone	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	
_		Unit bias	Unit bias	F	Unit bias	┝	F	Unit bias	F	Unit bias	F	Unit bias	
v stitchard harkhona	SWITCHES	Pixel Matrix	Pixel Matrix	SWITCHES	Pixel Matrix	/ stitched backbone	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	
L'O	0	Periphery	Periphery		Periphery			Periphery		Periphery	Periphery		

> 2 Periph		Periphery	Pe	riphery		Periphery	2.		Periphery		Periphery		Periphery >			
services 5 Mb/s	stitched backbone	Pixel Matrix	Pixel Matrix		Pixel Matrix			SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix		Pixel Matrix			
	Unit bias		Ur	nit bias		Unit bias			Unit bias	Unit bias			Unit bias			
	v stitched backbone	Pixel Matrix	SWITCHES	xel Matrix	SWITCHES	Pixel Matrix	v stitched backbone	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix			
	Sr	Periphery	Pe	riphery		Periphery	sr		Periphery		Periphery		Periphery			

LEC: data hub

Data path is Versatile Link+ compatible

[nominal operation]

10.24 Gb/s per serializer 3 serializers in use

RECEIVERS

LINK

TILE

LINK RECEIVERS

TILE

[in case of fault]

10.24 Gb/s per serializer 3 serializers in use

[nominal operation]

10.24 Gb/s per serializer 3 serializers in use

27

[nominal operation]

[in case of fault]

6 serializers in use

(bit stretching)

10.24 Gb/s per serializer 3 serializers in use

28

Yield improvement techniques

MOSAIX

Summary

Unprecedented in the HEP community!

What can we do better?

24 mm from the beam pipe 0.35 % X_0 per layer

Max reticle size

Α

300 mm wafer Α Α A Α Α Α Α Α

Max reticle size

300 mm wafer Only possible if the technology allows stitching Α Α Α Α Α Max reticle size split design Α Α Α Α Α Α Α Α Α Α Α stitching option 1 only one sensor size

Α

Two different goals

Two different approaches regarding defects

39

Tile = independent sensor unit

 $4.4 \ MHz/cm^2$ particle flux

Continuous trigger-less readout

Integration periods of minimum $2\ \mu s$

Hits collected in time stamped packets

160 Mb/s low-swing differential data transmission

