

The Energy measurement ASIC for the Upgrade II in the LHCb Calorimeter Detector

TWEPP 2024 workshop on electronics for Particle Physics

University of Glasgow Sept 30th-Oct 4th, 2024 **A. López**, E. Picatoste, S. Gómez, D. Gascón, J. Mauricio, R. Manera, J. Mazorra, X. Aragonés, D. Mateo, J. Altet, M. Ribalda

Outline

1. Introduction

- 1. ECAL Electronics Upgrade II
- 2. Energy ASIC overview

2. Energy ASIC architecture

- 1. Pre-amplifier and Pole-Zero filter
- 2. Integrator and Track-and-Hold
- 3. Channel simulation results

3. Fully-differential operational amplifier

- 1. Specification
- 2. Rail-to-rail input stage
- 3. Class AB output
- 4. Common-mode feedback
- 5. FDOA simulation results

4. Summary

LHCb calorimeter detector

Introduction ECAL Electronics Upgrade II

- Photodetectors readout solution follows the same scheme as in current ECAL:
 - PMT sensors near modules
- Signal conditioner circuit (COTS) to compensate cable attenuation, improve SNR, and reduce spill-over effort designed by IFIC
- ASIC/chipset in TSMC 65 nm with separate energy and timing paths.
 - Energy ASIC (ICECAL65) designed by UB, UPC and IFIC.
 - Timing ASIC (SPIDER) designed by IJC, LPC and IP2I.

Introduction Energy ASIC overview

- TSMC 65nm 8-channel ASIC
- Dynamic range 1 V with two-gain system and 11-bit resolution for optimal SNR
 - Noise/1LSB at ~ 500 μV
- Time-interleaved double channel scheme for integrator recovery
 - Data transmission at 40 MHz, continuous readout with no deadtime
- **Fully differential** to improve noise rejection.
- Clocks individually generated per channel using a PLL.
- Power consumption < 50 mW/channel.
- Measure digitized with an external ADC.
 On-chip ADC is under development for the second run.

2. Energy ASIC architecture 2.1. Preamplifier and Pole-Zero filter

- Input buffer (Preamp)
- Pole-zero filter
 - Shape the input signal to fit it within the 25 ns clock window.
 - Input signal with different shapes depending on:
 - Channel technology (SpaCal, W+Crystal, Pb+poly, Shashlik).
 - PMT
 - Cables
 - Adjustable RC for both pole and zero frequencies to:
 - Adapt the shape against the different technologies
 - Compensate the PVT corners.

2. Energy ASIC architecture2.1. Preamplifier and Pole-Zero filter

- **Plateau**: output stable at 1% for $> \pm 2$ ns
 - Stability of the integrator output to accept different arrival times
- Spill over $\lesssim 1\%$
 - Amount of signal of the present event that appears on the previous/next events.

Techno	Plateau (ns)	T-1 (%)	T1 (%)	T2 (%)	T3 (%)	T4 (%)	T5 (%)
WGAGG	3.7	0.93	0.01	0.60	0.61	0.84	0.83
PbPoly	9.3	0.05	0.78	0.31	0.01	0.06	0.14
Shashlik	5.1	0.34	0.19	0.84	0.38	0.32	0.30

TB pulse shapes and nominal case preliminary results

2. Energy ASIC architecture 2.2. Integrator and Track-and-Hold

- Integrator
 - **Time-interleaved** integrators \rightarrow no dead time
 - Variable capacitor for gain adjustment.
- Track&Hold
 - Based on bottom plate sampling technique
 → 3 non-overlapped 20 MHz clocks.
 - Precision for 11 bits.
 - High slew-rate to hold the measure for > 15 ns.
- PLL
 - 20 MHz clocks: integrator + TH + MUX + ADC
 - Calibrate the clocks with < 1 ns resolution.</p>
- Output buffer
 - Drive capability up to 10 pF to cope with IO+pack+ADC parasitics.

2. Energy ASIC architecture2.3. Schematic simulations results

120

100

160

180

140

t [ns]

- Pulse tail mostly filtered by shaper.
- T&H output value held for > 15 ns.
- Transient noise at T&H output ~ 500 µV. Maximum allowed for 11-bit precision.
- **Linearity** error < **1LSB** for $|v_{IN}(t)| < 1.1V$ in the LG gain path.

200

3. Fully-differential operational amplifier (FDOA).3.1. FDOA specification

- Development of a rail-to-rail fully differential amplifier in TSMC 65 nm technology.
- The FDOA must achieve the following specifications:
 - TSMC 65nm technology
 - Fully differential
 - ➢ Rail-to-Rail (0-1.2 V)
 - Low frequency gain > 70 dB
 - ➢ GBW > 500 MHz
 - ➢ PM > 65°
 - ➢ SR > 0.5 V/ns
 - > VCM ~0.6V
 - Power optimization
 - Output noise optimization

3. Fully-differential operational amplifier (FDOA).3.2. Rail-to-rail input stage

- Rail-to-rail input stage equalized using "shifter" transistors for constant GBW.
 - Need a common bias with 2 current DACs to cope with the PVT corners and 2 voltage DACs to adjust the displacement.
- RTR loaded with cascodes for high gain.

3. Fully-differential operational amplifier (FDOA).3.3. Class AB output stage

- Class AB output stage for rail-to-rail output swing.
- Floating transistors to generate the voltage drop for biasing the class AB transistors.
- Gain-boosting amplifiers to achieve gain specification.

3. Fully-differential operational amplifier (FDOA).3.4. Common-mode feedback (CMFB)

3. Fully-differential operational amplifier (FDOA).3.5. Simulation results

- PVT corners have been compensated using 2 current DACs to fulfill specifications.
- The DACs range is not wide enough to compensate for the post-layout parasitics of the PVT extreme cases.

Simulation		Schematic			Post-layout	
PVT corner	TT, 1.2Vdd, 27⁰C	SS, 1.14Vdd, 80ºC	FF, 1.26Vdd, -20ºC	TT, 1.2Vdd, 27⁰C	SS, 1.14Vdd, 80ºC	FF, 1.26Vdd, -20ºC
GBW (MHz)	519.7	511.2	623.9	475.3	412.1	490.2
DC gain (dB)	86.09	84.32	85.17	85.85	84.33	85.27
Phase Margin (°)	79.7	79.01	69.08	71.29	72.52	64.08
Vout + DC (mV)	599.4	600.7	601.8	601.3	599.1	601.5
Vout - DC (mV)	599.4	600.7	601.8	601.3	599.1	601.5
SR+ (V/µs)	583.4	860.3	657.4	654.9	917.4	657.4
SR- (V/µs)	-581.4	-861.6	-648.7	-650	-918.2	-648.7
l (mA)	1.94	2.448	1.875	2.16	2.361	1.772
Power (mW)	2.32	2.939	2.25	2.592	2.834	2.127

4. Summary

- Upgrade II ASIC developed in TSMC 65 nm technology based on proved U-I design.
 - Time-interleaved double channel guarantees the continuous readout.
 - Add a second gain path to cover the 12-bit resolution due to the reduced voltage supply.
 - The design of the fully-differential amplifier and the performance of the processing chain satisfies all channel requirements.
- FDOA layout finished
 - Postlayout simulations are promising even though current DACs need to be adjusted.
 - Dimensions fit the complete channel specification.
 - Layout of analog blocks ongoing.
- Next steps:
 - Complete the analog channel layout.
 - Integration of the analog chain with PLL and I2C block.

Thanks for your attention

Grant M2RN002806 MIN/ PID2022-139842NB-C21 funded by MICIU/AEI/ 10.13039/501100011033, as appropriate, by the "European Union NextGenerationEU/PRTR" and by Generalitat de Catalunya.

Back-up Pole-zero filter and integrator schematics

Pole-zero filter schematic

Integrator schematic

Back-up Track-and-Hold phases

(iii)

Figure 3.37 – Track-and-Hold phases.

(iv)

TWEPP 2024

Back-up FDOA Layout

FDOA LAYOUT (80 x 126 um)

Back-up FDOA for the ADC driver. Simulation results

- GBW > 300 MHz is enough to ensure the measure is held for the time required by the ADC.
- Still needs adjustment to guarantee stability for $C_L = 10 \text{ pF}$.

	Schematic TT						
CL	5 pF	6 pF	7 pF	8 pF	9 pF	10 pF	
GBW (MHz)	320.5	320.5	320.4	320.4	320.4	320.4	
DC gain (dB)	81.81	81.81	81.81	81.81	81.81	81.81	
Phase Margin (°)	72.59	69.58	66.67	63.91	61.33	58.96	
Vout + DC (mV)	599.7	599.7	599.7	599.7	599.7	599.7	
Vout - DC (mV)	599.7	599.7	599.7	599.7	599.7	599.7	
SR+ (V/µs)	374.7	374.7	373.5	371.8	369.9	368	
SR- (V/µs)	-374.8	-374.7	-373.6	-371.8	-369.9	-367.9	
I (mA)	4.032	4.032	4.032	4.032	4.032	4.032	
Power (mW)	4.838	4.838	4.838	4.838	4.838	4.838	