

Investigation of non-idealities of pulsing circuitry in the ALICE ITS3 MOSS monolithic sensor

Simone Emiliani, on behalf of EP-R&D Work Package 1.2 and ALICE ITS3 team

02/10/2024

Monolithic Stitched Sensor (MOSS) ASIC

- \cdot **ITS3** \rightarrow ALICE new inner tracker with wafer-scale bent silicon detector:
	- Minimized material budget.
	- Reduced radial distance from interactions.
- Small-electrode Monolithic Active Pixel Sensor (MAPS) which features low input capacitance.
- Stitching technique.
- 65nm CMOS imaging technology.

- MOSS chip was the first stitched chip developed by the team.
- 6.72 Mpixels grouped in independent regions (in terms of power, biasing, IOs).
- **The characterization of MOSS is crucial for the development of its successor (MOSAIX), the final prototype for ITS3.**

ent of the MOSAIX chip for the ALICE ITS3 up dro Vicente I eitan

ower distribution over the wafer-scale monolithic pixel

ation and Failure Analysis of the Monol

- Sensor electrode shielded up to fourth metal.
- Sensor capacitance few fF (~**1fF** - **5fF**).
- Pulsing circuitry to test analog front-end performance.

Simplified in-pixel readout electronics

- Sweeping injected charge to measure pixel threshold.
- Threshold map can be plotted.
- Uniform threshold across the matrix is desirable.

- Sweeping injected charge to measure pixel threshold.
- Threshold map can be plotted.
- Uniform threshold across the matrix is desirable.

- Sweeping injected charge to measure pixel threshold.
- Threshold map can be plotted.
- Uniform threshold across the matrix is desirable.

Non-idealities in the threshold column profile

MOSS in-pixel analog pulsing circuitry

- Two digital signals trigger analog pulsing.
- \bullet $Q_{\text{inj}} = C_{\text{inj}} * (VPULSEH VPULSEL).$
- Very small injection capacitance (240aF) to not increase significantly front-end input capacitance.
- **VPULSEH** generated by dedicated DAC in the biasing unit.
- **VPULSEL** connected to VSS in the biasing unit.

02 October 2024 **Simone Emiliani | TWEPP 2024** 14

Block generating **VPULSEH** is very off-centred to the right

02 October 2024 **Simone Emiliani | TWEPP 2024** 15

Block generating **VPULSEH** is very off-centred to the right

VPULSEH net distribution sketched. M1 thin horizontal line in common for all columns.

60 (DAC) 40 old $\frac{9}{5}$ 20 ັ∩ 64 128 192 255 Column

VPULSEH \blacksquare

INJb

VPULSEL

- Leakage on VPULSEH and VPULSEL is sub-threshold leakage.
	- At least 3 orders of magnitude larger than other biases (gate leakage).
- Schematic simulation reproducing VPULSEH and VPULSEL distribution including M1 resistance on horizontal bus.

*Illustration not to scale

DAC code 40

Column

Trend matched!

Lower charge injected results in higher observed threshold

- Visible column pattern on upper metal layers.
- Vertical lines correspond exactly to downward spikes in threshold column profile.
- Correlation is clear but what is the cause?

60 (DAC)

Threshold $($
20

40 TTTT

64

TITT

128 192 255 Column

Layout snapshot of M8 (second to last metal) vertical stripes used for power distribution on top of matrix

23 empty columns can be identified. 11 of these correspond to downward spikes.

Layout snapshot of M8 and ZA (last metal) power grid on top of matrix

ZA fills some of empty columns. Remaining 11 correspond to downward spikes.

- Two different scenarios:
	- Vertical stripe of top metal (M8 or ZA) is routed on one side of the electrode (filled column).
	- Neither M8 or ZA is drawn on pixel (empty column).
- Parasitics of pixel (analog and digital) are extracted considering the two cases.
- 3D parasitics extractor tool is used for maximum precision.

60

 40

64

128 192 255 Column

• It is found capacitive coupling between **IN** and **APULSE** lines on M4:

60

 40

64

128 192 255 Column

 $\begin{array}{ccc}\n\text{Threshold (DAC)}\\ \n\text{P} & \text{A} \\ \n\text{P} & \text{C} \\ \n\end{array}$

6ſ

 40

- Pixel without top metals switches at lower pulsing voltage.
- It is found capacitive coupling between **IN** and **APULSE** lines on M4:
	- 0.2aF with M8/ZA on top that acts as shield.
	- 2.8aF with no metal on top (neither M8 nor ZA).
- **APULSE** is full swing signal (1.2V):
	- $Q_{\text{ini}} = 2.8aF * 1.2V \approx 20e$ (corresponding to ~2.8 VPULSEH DAC code) unwanted extra injection!

02 October 2024 Simone Emiliani | TWEPP 2024 24

- **Can we believe a ~3aF coupling? Looking for evidence…**
- **APULSE** is coupled with front-end input, but **PULSE_EN** is not.

Standard pulsing procedure

- **1. PULSE_EN** is asserted
- **2. APULSE** is used to trigger pulsing circuitry

60

 40

64

 $^{\circ}$ 0

128 192 255

Column

 $\begin{array}{ccc}\n\text{Threshold (DAC)}\\ \n\text{P} & \text{A} \\ \n\text{P} & \text{C} \\ \n\end{array}$

- **Can we believe a ~3aF coupling? Looking for evidence…**
- **APULSE** is coupled with front-end input, but **PULSE_EN** is not.

Standard pulsing procedure

- **1. PULSE_EN** is asserted
- **2. APULSE** is used to trigger pulsing circuitry

Modified pulsing procedure

- **1. APULSE** is asserted
- **2. PULSE_EN** is used to trigger pulsing circuitry

Spikes are gone!

60

 40

64

128 192 255 Column

 $\begin{array}{ccc}\n\text{Threshold (DAC)}\\ \n\text{p} & \text{d} & \text{e}\\ \n\text{p} & \text{e} & \text{f}\n\end{array}$

N.B. Detailed implementation uses some tricks to overcome system constraints. Not reproducible on a large scale.

02 October 2024 Simone Emiliani | TWEPP 2024 26

Summary and conclusions

• **MOSS prototype being measured**

- for feedback for next stitched sensor (MOSAIX)
- **Two non-idealities in threshold map column profile:**
	- Smooth left-to-right trend \rightarrow sub-threshold leakage on pulsing voltages
	- Several spikes \rightarrow 3aF coupling between front-end input and pulsing trigger

• **Important learning for the MOSAIX chip:**

- Pulsing voltages distribution must consider large leakage
- Small collection electrode MAPS can be sensitive to aF parastitic capacitances
- Top metals can play pivotal role in shielding digital signals from the sensor electrode
- Post-layout simulation of pixel required including whole metal stack and considering carefully possible aggressors to analog front-end (using 3D parasitics extractor!)

BACK-UP

02 October 2024 Simone Emiliani | TWEPP 2024 28

ALICE Inner-Tracker-System upgrade (ITS3)

ITS2 - half barrel ITS3 - half barrel dummy silicon model

Azimuthal angle [°]

→ → 0.8 0.8 Other Silicon 0.7 ITS2 ITS3 $mean = 0.05 %$ 0.7 -0.6 $\frac{1}{2}$ 0.5 Silicor $mean = 0.35 \%$ ζŚ $\frac{8}{5}$ 0.4 0.3 $0.1 0.1$ 0.0 0.0 10 50 $\mathbf 0$ 20 30 40 60 50 10 20 $^{\circ}$ 30 40 60 Azimuthal angle [°]

ALICE ITS3 detector:

- wafer-scale stitched sensors (size: $280 \text{ mm} \times$ 57/75/94 mm).
- thinned down to $< 50 \mu m$.
- bent to form truly cylindrical vertex detector. \rightarrow exceptionally low material budget.

Stitching technique

- Chip size is traditionally limited by reticle size (a few cm^2).
- Stitching allows to produce larger chips with the aligned exposures of reticle sub-frames over the wafer.

Monolithich Stitched Sensor (MOSS) ASIC

MOSS ASIC Repeated Sensor Unit (RSU)

Signal amplification and discrimination

Importance of small sensor capacitance

Input signal \rightarrow S = $\frac{Q}{C}$ C

Input noise (dominated typically by the thermal noise of input transistor) \rightarrow $4K_BT\frac{2}{3}$ 3 1 gm

 $SNR \approx \frac{Q}{C}$ C 3gm $8K_BT$ $\propto \frac{Q}{c}$ $\frac{\text{Q}}{\text{C}}\sqrt{\text{g}_\text{m}} \propto \frac{\text{Q}}{\text{C}}$ C $\sqrt[m]{P}$ with m = 2 in weak inversion and m = 4 in strong inversion. $P \approx \left(\frac{Q}{C}\right)$ C −m with $2 \le m \le 4$ depending on the operating point of the input transistor.

 \rightarrow higher Q/C allows for a lower power consumption for a given SNR and bandwidth.

home.cern