Cleopatra : A 12-Channel Recycling Integrator ASIC for the Readout of Hydrogenated Amorphous Silicon Detectors in Radiotherapy Dosimetry

Giovanni Mazza on behalf of the HASPIDE collaboration

INFN sez. di Torino

mazza@to.infn.it

October 3rd 2024

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

HASPIDE project

- Development of Hydrogenated amorphous silicon (a-Si:H) detector :
 - Very good radiation hardness
 - Deposition on flexible substrates (Polyimide)
- Possible applications :
 - Beam dosimetry and profile monitoring
 - Neutron detection (Boron deposition)
 - Space application

TWEPP 2024

Beam dosimetry

- Microbeam Radiation Therapy (MRT) and FLASH therapy both show improved treatment efficacy and radiobiological effectiveness of X-ray therapy
- Key point : peak-to-valley dose ratio, radiation tolerance

M.Large et al., Dosimetry of microbeam radiotherapy by flexible hydrogenated amorphous silicon detectors,

2024 Phys. Med. Biol. 69 155022

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Architecture for beam dosimetry and monitor requirements

Requirements

- Input resistance ${\leq}1~\text{k}\Omega$
- Input capacitance 1÷50 pF
- Input current 100 pA \div 2 μ A
- Readout time from 400 μ s down to 60 ns
- Selected architecture
 - $I \rightarrow f$ converter followed by U/D counter
 - Based on the recycling integration principle (for large dynamic range)
 - Technology CMOS 28 nm
 - Small parasitic capacitance
 - High max frequency
 - Radiation tolerance
 - Key element : input opamp
 - Max clock frequency (simulated) : 640 MHz
 - 12-channel prototype for evaluation

Channel architecture

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Subtraction principle

$$f_{OUT} = \frac{I_{IN}}{C_{INJ}\Delta V}$$
$$\Delta V = (V_{QP} - V_{QM})$$
$$f_{MAX} = \frac{f_{CLK}}{4}$$
$$I_{MAX} = \frac{f_{CLK}}{4}C_{INJ}\Delta V$$

- no 1st order
 dependence on
 V_{REF}, V_{TH}
- digitally controlled polarity

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Design of the integrating stage

Three different OTA configuration have been designed :

- Two stage OTA with active feed-forward compensation (FF)
- Current-mirror topology with cascoded output (CM)
- Current-mirror topology with active gain boots (CMB)

Trade off between bandwidth (maximum conversion frequency) and gain (detector capacitance)

OTA bandwidth

- Power(FF) : 100 μW
- Power(CM) : 30 μW
- Power(CMB) : 90 μ W
 - G. Mazza (INFN Torino)

- GBW(FF) : 900 MHz
- GBW(CM) : 240 MHz
- GBW(CMB): 260 MHz < = > = >

TWEPP 2024

- October 3rd 2024
- 8/17

Cleopatra architecture

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Digital interface

pseudo SLVS based, fully differential

Signals

- Reset \pm (synchronous), clock \pm
- $\bullet~ {\sf Latch} \pm$: store all counter values into registers
- $Din\pm$, $Dout\pm$: serial interface working at half clock frequency
- Address < 6:0 > : chip address, internally hardwired in the prototype

Seven configuration registers :

- Addressed via custom serial protocol
- Integration and compensation capacitance selection
- Injection capacitance selection
- Polarity selection
- Data/control register readout selection

Cleopatra layout

- Technology : CMOS 28 nm
- Die size : $1.1 \times 1.3 \text{ mm}^2$
- SLVS interface
- Clock frequency up to 640 MHz
- Pad limited

Linearity vs injection setting - 1

- Injection capacitance : N×20 fF
- Injection voltage : 600 mV

Clock frequency : 500 MHz

TWEPP 2024

October 3rd 2024

Linearity vs injection setting - 2

TWEPP 2024

October 3rd 2024

Charge quantum measurement - polarity 0

- Slope(nom) : 12 fC/DAC code
- Slope(meas) : 8.02 fC/DAC code

- CMB : channels 11-8
- CM : channels 7-4
- FF : channels 3-0

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Charge quantum measurement - polarity 1

- Slope(nom) : 12 fC/DAC code
- Slope(meas) : 8.02 fC/DAC code

- CMB : channels 11-8
- CM : channels 7-4
- FF : channels 3-0

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Linearity - large input current

Polarity = 0

Saturation at
$$\frac{f_{CK}}{4} = 125 MHz$$

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Conclusions

• 12-channels large dynamic range prototype designed in CMOS 28 nm

- Measurement based on a $I{\rightarrow}f$ conversion
- Recycling capacitor principle for large dynamic range
- 3 opamp configurations, all fully functional
- Linearity in the few % range or better
- Per channel gain calibration required
- Next activities
 - Tests coupled with the detector
 - Design of a 32-channel version

Spare slides

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2024

Maximum current vs clock frequency

G. Mazza (INFN Torino)

TWEPP 2024

October 3rd 2<u>024</u>

Data format

Configuration operation codes

Function	Data	Op code		
	4 bits	12 bits		
Chip Select	1101	$01a_{\mathrm{B}}a_{6}a_{5}a_{4}a_{3}a_{2}a_{1}a_{0}00$		
Chip Deselect	0000	00xx xxxx xxxx		
Register select	0100	$00010 a_6 a_5 a_4 a_3 a_2 a_1 a_0$		
Register write	0101	$d_{11}d_{10}d_9d_8d_7d_6d_5d_4d_3d_2d_1d_0\\$		
Register read	0110	0000 0000 0000		
No operation	1111	0000 0000 0000		
Register read word	1000	$d_{11}d_{10}d_9d_8d_7d_6d_5d_4d_3d_2d_1d_0\\$		

Data output format

GCR06			Output word				
4	3:0	31:28	27:20	19:16	15:4	3:0	
0	n	1001	Re	0110			
1	т	1001	11001100	т	GCR(m)	0110	
0	n > 11	1001	1100 1010	0110			
1	<i>m</i> > 6	1001	1100 1010	1100 110	00 1100 1010	0110	

G. Mazza (INFN Torino)

TWEPP 2024