# **Radiation-Hard Smart-Pixel Detector ASIC ReadOut with Digital Al in 28nm**

Benjamin Parpillon<sup>1,3</sup>, Anthony Badea<sup>2</sup>, Chinar Syal<sup>1</sup>, Corrinne Mills<sup>3</sup>, Douglas Berry<sup>1</sup>, Farah Fahim<sup>1</sup>, Giuseppe Di Guglielmo<sup>1</sup>, Jennet Dickinson<sup>5</sup>, Jieun Yoo<sup>3</sup>, Jim Hirschauer<sup>1</sup>, Karri Folan Di Petrillo<sup>2</sup>, Lindsey Gray<sup>1</sup>, Manuel Valentin<sup>6</sup>, Morris Swartz<sup>4</sup>, Nhan Tran<sup>1</sup>, Petar Maksimovic<sup>4</sup>

1 – Fermi National Accelerator Laboratory, 2 – University of Chicago, 3 – University of Illinois at Chicago, 4 – Johns Hopkins University, 5 – Cornell University, 6 – Northwestern University



- 7 times higher interaction rate
- Raw data generation of 40ZB/year

![](_page_0_Figure_9.jpeg)

Ш

MOD

RING

ш

LL

AI/ML

98.83 M new users

- create an in-pixel ADC with distinct reset and compare phases is required
- On chip data reduction capability using **AI/ML** techniques

PT Filter

# PROT 0 Z FRONT ALOG

5

IMPLEM

I/ML

![](_page_0_Figure_13.jpeg)

- AFE Prototype designed in HPC+ 28nm
- ROIC pixel size is 25µm x 25µm
- Preamplifier dynamic range 64aC 2.1fC
- **Radhard** by design: 50nA leakage compensation
- Sampling at bunch crossing rate: 40MSPS
- Offset cancellation with auto-zero
- Equivalent noise charge (ENC) 31e- with 400ethreshold (no sensor cap)
- Total charge dispersion <100e- across entire

![](_page_0_Figure_22.jpeg)

Injected Charge (electrons)

# **Filtering Algorithm for momentum Classifier**

![](_page_0_Figure_25.jpeg)

0.40 € 0.20 ysize 0.0 -2true PT (GeV) Charge projection on the y-axis correlates

1.00 0.95

0.90

v 0.60

with momentum  $p_T = 1.9 \text{ GeV}$ <sup>10</sup> p<sub>T</sub> = 135 MeV

M

• Classifier models reject between 50% to 75% of the clusters

yprofile with timing info

yprofile

• More power savings due to reduced I/O transfer

matrix with 400e- threshold (no sensor cap)

Pixel Power ~5uW

S-curves of total dispersion for all hit comparators in the array with 400e- equivalent threshold voltages and no sensor capacitance connected to the ROIC

![](_page_0_Figure_33.jpeg)

<u>leterence:</u> ] Jieun Yoo1,\*, Jennet Dickinson et al., "Smart pixel deep learning". Published 14 August 2024 "Machine arning: Science and Technology", Volume 5, Number 3

## **On-Chip Digital Momentum Classifier**

![](_page_0_Figure_36.jpeg)

- **Co-Design** development with analog frontend pixels connected to a fully combinatorial digital classifier
- **Combinatorial** design reduces dynamic power
- Digital power estimated to be 300uW for 256 pixels  $\rightarrow$  ~1uW/pixel
- Total power density (AFE + digital) < 1W/cm2</li>

![](_page_0_Figure_41.jpeg)

#### ASIC validation ongoing

### **Smart Pixel Implementation**

Study and implement analog/hybrid AI/ML algorithm that can be distributed throughout the detector:

- Explore **analog** algorithms to efficiently process sensor signals at the source.
- Compression (or featurization)
  - 1. Train algorithms to extract real time physics data for triggering on interesting collisions
  - 2. Readout only the critical physics data instead of the raw detector data and figure out the calibration loop

![](_page_0_Figure_49.jpeg)

![](_page_0_Picture_50.jpeg)

![](_page_0_Picture_51.jpeg)

#### Fermi National Accelerator Laboratory

#### This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics