
Limited data size can be input at one time, and it takes time to validate.

In this way, data generated by the CPU’s int type can be used to intuitively manipulate the inputs and outputs of the trigger logic.

It is also possible to measure the latency from data input to signal output.

Development of the firmware logic validation system

using the FPGA accelerator
Ryugo Mizuhiki, Junpei Maeda, Seiya Marumoto (Kobe University)

Abstract

FPGA accelerator

Alveo U200 [1] Virtex Ultrascale [2]

FPGA XCU200 XCVU9P

BRAM 77.8 Mb 75.9 Mb

URAM 276 Mb 270 Mb

LUT 1,182k 1,182k

FF 2,364k 2,364k

value $6,585 $64,542

The Alveo U200 card has almost

the same specifications as the

Virtex Ultrascale+ XCVU9P, but it

is approximately 10 times cheaper.

Validation of recent FPGA firmware logic used in particle physics is challenging, as the firmware logic becomes larger and more complex with the

increasing FPGA resources. To validate the firmware logic efficiently, we developed a validation system using FPGA accelerators. We established a

system supporting communication between the CPU in the host PC and the firmware we want to validate. Thanks to the fast and versatile data

input/output, flexible validation with large amounts of data is possible. The details and implementation of the developed validation system are presented.

FPGA accelerators are expansion cards with a built-in FPGA.

These cards connect via PCI-Express. They are gaining attention as an option for

heterogeneous computing, which combines different types of processors to improve

performance and efficiency.

Typically, these accelerators are used to exploit the flexibility and parallel computing

capabilities of FPGAs, achieving faster results than using the CPU alone.

Alveo U200 ©AMD

・Communication between the host PC and the FPGA

accelerator is controlled by DMA in the static region

on one of Super Logic Region (SLR1). [3]

・We can implement logic to be validated in the

Dynamic Region.

・A trigger logic communicates with the DDR using

AXI interface, a handshake-based communication

interface.

・The calculation results can be transferred to and

read by the CPU.

Motivation

Complex input/output settings are required.

→ FPGA accelerators are inexpensive and can be easily introduced in several research institutes.

1. The firmware logic is compiled into object files on Vivado.

2. Develop the control program for the FPGA in C++.

3. Use Vitis to combine the object files generated by Vivado

with the C++ code to create a single application. [4]

Vivado 2022.2 Vitis 2022.2

Overview of the developed validation system

① Generate data in the CPU and transfer it to the accelerator's DDR.

② Write data to the FIFO buffer in the FPGA using the AXI interface.

③ Provide appropriate input to the Trigger Logic using the Patch Panel logic.

④ Perform calculations, output the results, and transfer the data back to the CPU.

Data communication with FPGA accelerator.

Development Procedure Example of trigger logic validation

We have run the example logic used for the trigger.

Raw
data

64×64

Compressing data

64bit

64bit

BRAM
72bit

Collisions

Performance
The outputs and latencies of the trigger logic were obtained from the FPGA

accelerator. The validation time was also measured.

Conclusion

We have developed a fast and flexible trigger logic validation method using

FPGA accelerators, which allows data to be read and written directly from a PC.

This method streamlines the validation of trigger logics that are time-consuming

with conventional methods, such as large-scale LUTs, thereby accelerating

trigger logic development.

Initialisation (3s for the first time only).

Time per validation cycle. (2.2ms)

Reference
[1] Digikey (25th Sept. 2024)

https://www.digikey.jp/en/products/detail/amd/A-U200-P64G-PQ-G/9645681

[2] Digikey (25th Sept. 2024)

https://www.digikey.jp/en/products/detail/amd/XCVU9P-2FLGB2104I/7604576

[3] Alveo Data Center Accelerator Card Platforms User Guide (UG1120)

https://docs.amd.com/r/en-US/ug1120-alveo-platforms/Overview

[4] AMD XILINX Vitis Tutorial

https://Xilinx.github.io/Vitis-Tutorials/2021-2/build/html/index.html

Input data size is 514 bits,

output data size is 72 bits.・"FIFO buffer" logic combines the input data, divided into 32-bit chunks by the AXI

interface, back into a single data stream. On output, the FIFO buffer splits a large

data set into 32-bit chunks to match the AXI interface format.

・"Patch Panel" logic redistributes a large data stream into several input signals. At the

output, multiple signals are bundled into one.

The latency of the signal output can

be measured by sequentially repeating

the data input and output.

The results of the software simulator

and the accelerator can be compared

to validate that the triggering logic is

implemented correctly.

Logic that calculates momentum using a LUT based on the detector’s η difference.

Topical Workshop on Electronics for Particle Physics, TWEPP-24

30 September – 4 October, 2024, Glasgow (United Kingdom)

Example of I/O signals from the FPGA accelerator

Only a few prototypes are available so multiple developers cannot work simultaneously.

→ FPGA accelerators allow data to be read and written directly from a PC.

latency

Trigger logic verification using the current evaluation board has several issues, so an FPGA accelerator was used to solve the problem.

clock

Input A

Input B

OUTPUT

I/O signals from the software simulator

Output

Comparison

The developed system can validate that the trigger logic has

been implemented correctly.

We could see the output results in the

text format.

latency

output

data

input

data

LUT

result

clock

number

https://www.digikey.jp/en/products/detail/amd/A-U200-P64G-PQ-G/9645681
https://www.digikey.jp/en/products/detail/amd/XCVU9P-2FLGB2104I/7604576
https://docs.amd.com/r/en-US/ug1120-alveo-platforms/Overview
https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/index.html

	スライド 1

