HLS Feature Extraction on the readout FPGA in the mCBM Experiment

David Schledt^a, Christoph Blume^a, Udo Kebschull^a

a - Goethe Universität Frankfurt am Main

@ FAIR

- Probe QCD at baryon densities similar to neutron star cores
- Fixed target experiment with up to 10 MHz interaction rates
- Self-triggered free streaming data readout
- Implemented in a small scale in mCBM experiment

QCD phase diagram

- CBM-TRD² uses SPADIC to read out detector
- Oscilloscope like sampling of the detector signal
- Many features encoded in the transmitted signal shape
 - Baseline, total charge, precise trigger time

Message Decoding

- C++ template programming is used to adapt the decoding algorithm to the chosen ASIC configuration
 - compile time calculation of ADC sample position efficiently maps to hardware
- HLS³ implementation of baseline correction and energy reconstruction with maximum throughput
- Reconstructed message reduces data volume by factor ~ 4

Data rate with and without feature extraction

Time reconstruction

$$f(T) = A \frac{T}{\tau} \exp\left(-\frac{T}{\tau}\right)$$

$$T = t + \varphi$$

$$\varphi = \frac{f(0) \cdot t_2}{f(0) - f(t_2) \cdot \exp\left(\frac{t_2}{\tau}\right)}$$

SPADIC shaping function visualized with different time shifts

- HLS simplifies implementation substantially
 - Automatically chooses the best division method
 - Auto pipelining for maximum throughput
 - Functional validity determined in C++
- Significant improvement in time resolution
- Data unpacking speed up by factor ~ 30

- ADC sampling rate only 16 MHz (62.5 ns)
- A more precise signal time is encoded in the signal shape
- Analytic calculation derived from SPADIC shaping function

Time difference TRD/TOF⁴ in mCBM

Outlook

- FPGA implementation of a cluster finder for free streaming data based on [1]
- Will further reduce the data load and free up computational resources
- 1: Compressed Baryonic Matter 3: High Level Synthesis
- 2: Transition Radiation Detector 4: Time Of Flight
- [1] V. Friese, A cluster-finding algorithm for free-streaming data, 10.1051/epjconf/201921401008