

The APx Board for the CMS Phase 2 L1 Calorimeter trigger: Testing and Performance

Pallabi Das¹, Sridhara Dasu³, Piyush Kumar², Bhawna Ghomber², Tom Gorski³, Stephanie Kwan¹, Andrew Loeliger¹, Luis Alberto Perez Moreno¹, Alexander Savin³, Victor Shang³, Varun Sharma³, Aleš Svetek³, Jesra Tikalsky³, <u>Isobel Ojalvo¹</u>

1 Princeton University

- 2 University of Hyderabad, India
- 3 University of Wisconsin Madison

HL-LHC Upgrades

- L1 trigger upgrade:
 - More granular input information: 25 times increment for calorimeter trigger.
- First time inclusion of
 - tracker information
 - Correlator trigger
- Advanced and more complex algorithms.
- Usage of:
 - Large FPGAs: Virtex UltraScale+.
 - High-speed optical links: 25 Gbps.
- Latency: 12.5 µs
- Rate: 750 kHz
- Replacement of electronics infrastructure
 - from µTCA to ATCA standard
 - o Rack
 - o Crate
 - o Board

Summary of CMS HL-LHC Upgrades

Phase 2 CaloTrigger Block Diagram

- The trigger system as a whole will have inputs from Tracker, Calorimeter, Muon Systems
 - Calorimeter trigger has inputs from the Barrel Calorimeter, Forward Hadron and HGCAL
- Latency:
 - Entire System: 12.5µs
 - $\circ\,$ Calorimeter trigger allotted 4 μs

Phase-2 CaloTrigger Cluster Finding

- The figure shows each ECAL crystal as a pink square.
- The core cluster sums the energy in a 3x5 window of crystals (light blue) centered on the seed crystal (red).
- Shower shape energy deposit sums are calculated around the seed crystal in 2x5 and 5x5 windows (dashed blue and purple lines).
- Bremsstrahlung energy is detected in adjacent 3x5 windows (yellow spread in \$\phi\$).
- Isolation is computed in a 7x7 tower window around the tower containing the seed (too large to display).

3x4 barrel ECAL region

Phase-2 CaloTrigger Cluster Finding

CMS Phase-2 Simulation Preliminary

Fraction of Events 5100

0.1

0.05

-0.2

-0.1

0

02

- The figure shows each ECAL crystal as a pink square.
- The core cluster sums the energy in a 3x5 window of crystals (light blue) centered on the seed crystal (red).
- Shower shape energy deposit sums are calculated around the seed crystal in 2x5 and 5x5 windows (dashed blue and purple lines).
- Bremsstrahlung energy is detected in adjacent 3x5 windows (yellow spread in φ).
- Isolation is computed in a 7x7 tower window around the tower containing the seed (too large to display).

Calo Trigger Hardware: APxF Card

- VU13P-2 Speed FPGA
- 120 Tx/Rx Lanes of 25×12 Fireflys for trigger primitive I/O
- 4 Lanes of 28×4 Firefly for readout
- ZYNQ-7000 based IPMC
- ZYNQ MPSoC-based Embedded Linux for online control

APxF Rev K

- ELM2: Custom ZYNQ MPSoC Linux endpoint for APx ATCA Blades
 - Used on all APx Cards until APxF Rev B
- Kria K26: Generic Xilinx ZYNQ MPSoC
- Migrate ELM2 to K26
 - K26 costs less, but lacks GbE PHY, SD card and refclk synths and needs 5V supply
 - Smaller footprint than ELM opens main board space to implement needed circuitry
- Will use K26 modules in Calo Trigger production
- First units currently undergoing assembly

APx Firmware Shell

- Generic FPGA project
 - Built-in MGT Protocol Blocks (CSP), LHC Timing (TCDS2)
 - Slow control via AXI-mapped register file to Linux endpoint
- Shell constrained to the periphery, leaving center of FPGA for algorithm use
 - 64-bit word AXI stream interface between links and algorithm
- Each Tx/Rx channel has a 1024-word playback/capture buffer
 - Can read/write the AXI stream at the link/algo boundary
 - Advanced modes for playback/capture, including dynamic switching on playback between buffer/live data, and captures triggered by link errors.

CMS Standard Protocol (CSP)

Trigger Data in CMS Level 1 Trigger transported using CSP

CSP Essentials:

- Based on 64b66b style encoding with control and data words
- Operating modes defined for 16G and 25G line rates, both synch and async to LHC clock
- Data words carry trigger primitive information for the Level 1 Trigger
- Control words carry overheads:
 - $\circ~$ Packet CRCs, Transmitter ID words, BC0, filler characters needed to sustain line rate
 - $\circ~$ No overheads in data packets (100% physics payload)
- Protocol reliability mechanisms to resist and recover from synchronization loss from transmission errors

APx 25G CSP Link Latency

APxF Frontpanel NIM 50 Ω I/O (3.3V LVCMOS)

Latency Flip Flop Events for BC0-tagged data word:

- 1. Word at CSP Tx input port (rising edge, @algo clock)
- 2. Word at Tx MGT input port (falling edge, @link clock)
- 3. Word at Rx MGT output port (rising edge, @link clock
- 4. Word at Rx algo input port (falling edge, @algo clock)
- Oscilloscope measurement of APx CSP minimum link latency on APxF card
- Asynchronous Flip Flop tracks BC0-tagged word from Tx algo to Rx algo
- Measured latency with 1m of external fiber is ~4.3 Bx (plus extra Bx per 5m of fiber)

Algorithm De-skewing With 25G Links

- Endcap data arrives at Global Calo Trigger much later than Barrel data
- APx CSP logic uses 512-word BRAM FIFOs to cross algo/link clock domains
- These FIFOs can <u>also provide extra latency</u> on data algo paths
- Tx side: bulk delay, build time options of 0, ~0.5, 1.0, 1.25 µs at 25G
- Rx side: algo-aligned delay, up to ~1.25 µs, controlled at run time at 25G
- Up to ~2.5 µs of de-skew per Tx/Rx pair, fully channel-specific at 25G
- Eliminates need for internal algo-based de-skewing (e.g. UltraRAM)

ATCA Crate Infrastructure for Production

- Two ATCA crates in Wisconsin lab
- Common ersatz LHC timebase established between them in hub slot 1
 - Optical connection between two APx Test Hub (ATH) Cards, with possible future upgrade to CMS DTH cards
 - LHC 40 and BC0 to 24 blade slots
- Sufficient slots to allow newly-assembled cards to undergo extensive performance qualification of optical links (~2E15 bits/link/day @25G)
- Lab capacity for additional crates as needed

25×12 Firefly Evaluation

- The story of Samtec 25×12 parts is well-documented elsewhere
- Our approach has been to get as many 25×12 links in operation as possible running actual protocols on actual boards and to count errors
- Past Test Highlights:
 - Dec 2023: Success running 192 lanes of 2023-vintage Tx devices with 2022 Rx devices for >31 hours without any CRC errors
 - Jan 2024: During rigorous testing a VCSEL fails and Samtec subsequently acts to change VCSEL devices
 - May 2024: 24 lanes of new VCSEL devices are received from Samtec and rigorously tested to 3E16 bits/lane with no CRC errors observed
 - June 2024: 1E17 bits/channel reached on new VCSEL eval devices with no CRC errors
- From evaluation to date the 25×12 devices appear to have adequate performance (BER <1E-15) with availability the primary issue

All 2

- Same VU13P-2 FPGA as APxF
- Replace 25×12 Firefly devices with 28x4 devices—total of 31 in all
- Same Linux (K26) and IPMC circuitry
- Redesigned frontpanel, Firefly power distribution and Firefly heat sinks
- PCB layout complete
 - Waiting on evaluation of K26 circuit in APxF Rev K before building boards

Firmware Validation

- Calorimeter Trigger consists of 24 regional cards and 10 global cards
- The physical footprint of the subsystem—especially the optical fiber plant—is too large to fully construct outside of the experimental site
- Through the use of virtualization of cards and link connections, full scale testing of all bitfiles and all link paths is possible

<u>FPGA</u> <u>Environment</u> for <u>A</u>lgorithm <u>S</u>lice <u>Tests</u>

- FEAST Environment for algorithm development and validation
- Supports mixed physical and virtual link test systems including link alignment
 - Virtual links implemented using APx shell playback/capture buffer technology
- Bitfiles run on target FPGAs with target MGT channel allocations
- Construct full-scale, multi-layer, virtualized installations and test on actual FPGAs anywhere using FEAST engine

FEAST Example Job Diagram

(Diagram automatically generated by FEAST sequencer)

- Auto-generated image from analysis of the example job
- Rectangles represent input/output data files
- Ovals represent virtual boards
- Labels are user-supplied
- Lines represent links (data paths between boards/files)
 - Blue → for virtual links
 - Orange \rightarrow for physical links
- Visual confirmation of system configuration

Calorimeter Trigger Prototype

19

Global Calorimeter Trigger: Firmware

VU9P has multiple SLRs

- Algorithms spread across multiple SLRs
 Crossing SLRs is not a trivial exercise
- SLR2:
 - Stitch e/gamma clusters across RCT card boundaries, create GCT towers
 - PF Clustering: 3x3 clustering of GCT towers, sent to correlator trigger for further processing
- SLR1:

○ Create GCT jets in barrel

Summary

- APxF card successfully produced
 - Now being used for core FW development
 - APxF Rev K undergoing assembly
- Experience gained during design, installation, commissioning and operation of the current Level-1 Calorimeter Trigger System
 - Firmware Shell separates physics algorithms from core firmware
 - Algorithms built with HLS
 - Firmware Validation using "FPGA Environment for Algorithm Slice Tests"
 - $\circ\,$ Construct full-scale, multi-layer, virtualized installations and test on actual FPGAs anywhere using "FEAST" engine

Global Calorimeter Trigger: Firmware

- VU9P has multiple SLRs
 - Algorithms spread across multiple SLRs
 - SLR2:
 - Stitch e/gamma clusters across RCT card boundaries, create GCT towers
 - PF Clustering: 3x3 clustering of GCT towers, sent to correlator trigger for further processing
 - SLR1:
 - o Create GCT jets in barrel
 - Output:
 - o 48 links to Correlator Trigger
 - \circ 6 links to GCT sum board
 - Latency: 692 ns out of 3 µs budget
 - Resource Utilization
 - Look-up Tables (LUTs): 22%
 - Flip-flops (FFs): 18%
 - Digital Signal Processor (DSP): 0%