SPONSORED BY THE

KALYPSO LGAD - A MHz repetition rate line camera based on trench isolated low gain avalanche detector

M. Patil^{*1}, M. Caselle^{*1}, E. Bründermann¹, S. Chilingarayan¹, A. Kopmann¹, G. Niehues¹, J. Steinmann¹, S. Stankov¹, A.-S. Müller¹, G. Borghi², G. Paternoster², M. C. Vignali², M. Boscardin²

*michele.caselle@kit.edu, *meghana.patil@kit.edu ¹ KIT (Karlsruhe, Germany), ² FBK (Trento, Italy)

www.kit.edu

Karlsruhe Research Accelerator - KARA

- Accelerator test facility and synchrotron light source at KIT
- Circumference: 110.4 m
- Energy range: 500 MeV 2.5 GeV
- Bunch spacing: 2 ns
- Total number of bunches: 184
- Short bunch operation: $\sigma_z \sim 4 \text{ ps}$
- Studies of micro-bunching instability

Requirements for beam diagnostics

Parameter	Value
High frame rate	> 1 Mfps
High resolution	256 channels < 50 μm pitch
Wide spectral sensitivity	NUV, VIS, NIR, mid-IR
Long observation times	Milliseconds to hours
Synchronization	Correlating measurements at different setups

Sensor: Si (Vis) , InGaAs (NIR), PbS, PbSe (Mid-IR), LGAD (Vis)

LAS. IPE. KIT

SENSOR

KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy

- Sensor: Si, InGaAs, PbS, PbSe, LGAD
- ASIC Gotthard-KIT: Low-noise and MHz frame rate

KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy

- Sensor: Si, InGaAs, PbS, PbSe, LGAD
- ASIC Gotthard-KIT: Low-noise and MHz frame rate
- ADCs: Up to 32 parallel ADC channels (64 time -interleaved) each operating up to 125 MS/s

KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy

- Sensor: Si, InGaAs, PbS, PbSe, LGAD
- ASIC Gotthard-KIT: Low-noise and MHz frame rate
- **ADCs**: Up to 32 parallel ADC channels (64 time -interleaved) each operating up to 125 MS/s
- **External clock inputs**: Synchronisation to experimental setup

KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy

- Sensor: Si, InGaAs, PbS, PbSe, LGAD
- ASIC Gotthard-KIT: Low-noise and MHz frame rate
- **ADCs**: Up to 32 parallel ADC channels (64 time -interleaved) each operating up to 125 MS/s
- **External clock inputs**: Synchronisation to experimental setup
- Femtosecond time jitter clock distribution: Programmable for user applications

KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy

- Sensor: Si, InGaAs, PbS, PbSe, LGAD
- **ASIC Gotthard-KIT**: Low-noise and Mfps frame rate
- **ADCs**: Up to 32 parallel ADC channels (64 time -interleaved) each operating up to 125 MS/s
- **External clock inputs**: Synchronization to experimental setup
- Femtosecond time jitter clock distribution: Programmable for user applications
- FMC/FMC+ connector: Compatible with standalone and µTCA based DAQ system

Data Acquisition Flow

LGAD – Low Gain Avalanche Detector

- An additional layer called "gain layer" below the microstrip implant
- A highly localized electric field below breakdown of Si initiates an avalanche process
 → 3 x 10⁵ V/cm
- Junction Termination Extension (JTE) required to prevent edge breakdown
- Isolation between strips \rightarrow p-spray/p-stop process

Deep trench isolated LGADs (TI-LGADs)

Fill factor improved from <50 % to >80 %

- First prototyping within RD50, sensor with a very small active region →3x3 mm²
- Designed for particle physics as well as photon science
- Characterization performed from device level to system level
- Very low dark current → in the order of a few hundred pA/channel

Picture courtesy of G. Paternoster (FBK), Work performed in the framework of RD50

Deep trench isolated LGADs (TI-LGADs)

- Fill factor improved from <50 % to >80 %
- First prototyping within RD50, sensor with a very small active region →3x3 mm²
- Designed for particle physics as well as photon science
- Characterization performed from device level to system level
- Very low dark current → in the order of a few hundred pA/channel

Picture courtesy of G. Paternoster (FBK), Work performed in the framework of RD50

Characterization of full readout chain

- The TI-LGAD-based line camera shows increased sensitivity with higher gain settings, particularly evident with Gain setting 2, which sharply amplifies the signal at higher bias voltages
- Three gain settings help in measuring a wide range of visible light intensity
- For synchrotron radiation @ bunch currents > 2 mA gain 0 or 1 is used
- For synchrotron radiation @ bunch current < 2 mA gain 2 is used (more interesting region for radiation study)

Integration time scan

- A CW source with uniform illumination across the sensor has been used
- The ADC counts exhibit a nearly linear increase with extended integration time across all gain settings, with Gain setting 2 achieving the highest signal levels
- Consistent SNR trends across integration times
- Adjusting integration time for each gain setting could optimize dynamic range, balancing signal fidelity and noise.

LGAD for horizontal bunch size measurements

- Sensitive to radiation in the visible spectrum
- Readout by Gotthard-KIT developed at KIT
- Maximum possible framerate is 12 Mfps in full occupancy
- Setup at the VLD port working at 2.7 Mfps for single bunch mode

Horizontal bunch size measurement with LGAD

Energy spread σ_{δ} cannot be measured directly →Measuring the horizontal bunch profile σ_x at the dispersive section

 $\sigma_x = \sqrt{\beta_x \epsilon_x + (D_x \sigma_\delta)^2}$

 β_x -Beta function, ϵ_x - Emittance, D_x - Dispersion

 Measuring the incoherent synchrotron radiation (ISR) at a 5° port of a dipole bending magnet

Radiation in the visible region HPF 450 nm

Performance of KALYPSO-LGAD

- Gain factor of ~15, with multiplication from Gotthard x2
- Better SNR 45 dB \rightarrow 60 dB
- Average ENC of 500 e⁻
- Sensitivity toward low bunch charges 257 pC (0.7 mA) → 18 pC (50 µA)
- Good spatial resolution < 50 μm</p>
- A prototype version hence limited active area⁺

[†]An engineering run is scheduled to produce custom sensors

Horizontal bunch size measurement with LGAD

- Up to 2 million single shot acquisition \rightarrow 736 ms
- Longer observation times \rightarrow acquistions up to 6 hours, more possible (limitation: storage size)

Horizontal bunch size measurement with LGAD

- Horizontal bunch size and THz emission modulate with the same frequency
- Synchronous motion of the electron bunch can be measured

Current decay analysis

- Previous detectors
 - Fast gated camera: Low bunch charges possible, limited frame rate and observation time with only every 6th turn, with a max of 80 samples
 - KALYPSO v1: Low bunch currents limited, but high frame rate and long observation time,
 - turn by turn measurements possible

Rota, L. (2018, PhD thesis, https://doi.org/10.5445/ir/1000082349

Current decay analysis

- Previous detectors
 - Fast gated camera: Low bunch charges possible, limited frame rate and observation time with only every 6th turn, with a max of 80 samples
 - samples
 KALYPSO v1: Low bunch currents limited, but in high frame rate and long observation time,
 - turn by turn measurements possible
 Rota, L. (2018, PhD thesis, https://doi.org/10.5445/ir/1000082349
 - New setup KALYPSO-LGAD
 - Low bunch currents down to 50 μA
 - High framerate and long observation time 1,000,000 samples per dataset per bunch current acquired
 - Turn by turn measurements

Thank you for your attention

Meghana M Patil

LGAD characteristics – IV curve

- I-V curve measurements
- Dark current approximately 1 µA across 64 channels
- Breakdown voltage observed at approximately 180V
- T2 shows higher gain than T1 due to reduced dead area
- C1 (Dist. Contact) shows higher gain when compared to C2 (Peri. Contact)

