

ALMA MATER STUDIORUM Jniversità di Bologna

Davide Falchieri^a, Pietro Antonioli^a, Casimiro Baldanza^a, Daniele Cavazza^a, Sandro Geminiani^{ab}, Marco Giacalone^a, Jacopo Succi^{ab}, Carlo Veri^c

INFN Bologna^a, University of Bologna^b, INFN Lecce^c

TWEPP 2024, Glasgow, 30 September - 4 October 2024

Towards a flexible timing measurement device

Our goal was to build a flexible high resolution timing measurement device able to:

- connect to multiple detector types + FEE with standard connectors
- provide high data bandwidth towards a PC via standard interfaces (Ethernet + USB3)
- provide the best achievable timing resolution on a lot of channels (128)

The picoTDC ASIC from CERN

picoTDC main features:

- bin size: 3.05 ps (fine resolution) or 12.2 ps (coarse resolution)
- single shot resolution: <3.3 ps in fine mode or <4.2 ps in coarse mode
- measurement range: 204.8 μs
- measurement scheme: triggered or un-triggered time-tagging

From TRM to TRM2 for time measurements in ALICE TOF detector

The **TRM VME** card is the main element of the TOF readout system and it hosts:

- an Actel ProASIC FPGA to manage the readout and board operations.
- **30 HPTDC** ASICs (24.4 ps LSB, 8 ch/chip) to provide time measurements.

To replace damaged TRMs during LHC Run 4, a new **TRM2** project began, considering:

- a PolarFire FPGA to manage the readout and board operations.
- **4 PicoTDC** ASICs (12.2 ps or 3.05 ps LSB, 64 ch/chip) as successors of the HPTDCs.

Towards the picoTDC board

The picoTDC board

standard FMC HPC

table-top board (20 x 15 cm) to be used in conjunction with pFEBs

15 SMA I/Os, among which an option reference external clock

standard FMC HPC

The picoTDC board (layout)

dieletric: FR-408, PREPREG_58 total thickness: 1.6 mm differential lines and equalization PCB stackup, 14 layers

The picoTDC board (layout)

the 3 clock tracks are equalized

PolarFire FPGA firmware

PolarFire FPGA firmware: IPbus core implementation

We used the Microchip IP cores (CoreRGMII and CoreTSE) towards a first implementation of CERN IPbus core over a Microchip FPGA

picoTDC board software

The **user interface** is designed to hide the system complexity and works through **prompt line commands.** It provides **two main user programs**:

Configuration for triggered mode with channels 62-63 on picoTDC A: \$./**PicoTOF** –triggered –<u>Iw 400 360</u> –falling_edge n –ch_en fine 62 63 –init A

Acquisition of 10M events on picoTDC A:

\$./**PicoRead** –chip A –events 10000000 –output file.ptdat

Towards a family of pFEBs

We designed a family of custom picoTDC board – compatible mezzanines to provide connection towards detectors and their front-end electronics

A family of picoTDC compatible Front-End Boards (1)

from ALICE TOF MPRCs front -end

picoTDC breakout board

A family of picoTDC compatible Front-End Boards (2)

https://www.weeroc.com/products/sipm-read-out/liroc

timing resolution (better than 20ps FWHM)

A family of picoTDC compatible Front-End Boards (2)

CAEN adapter board

A family of picoTDC compatible Front-End Boards (3)

TDC resolution measurements

- 1. power supply
- 2. picoTDC board
- 3. pFEB breakout board
- 4. PLL clock generator (SiLabs Si5341-D)
- 5. electromagnetic trombone

This is the setup used for the **TDC resolution estimation** performing a **two-channel time measurement,** considering **two clock signals** (100 kHz) and employing an **electromagnetic trombone** to shift one of the two signals by a **delay within the 0-600 ps range**

TDC resolution measurements

A software generated trigger is sent at 10 KHz

Data analysis and results: offset measurement

offset picoTDC B = 1878.8 · 3.05 ps = **5730.3 ps**

offset picoTDC A = 1889.1 · 3.05 ps = **5761.9 ps**

Data analysis and results (2)

	picoTDC A		picoTDC B	
delay (ps)	delay _{meas} (ps)	σ _{time(2ch)} (ps)	delay _{meas} (ps)	σ _{time(2ch)} (ps)
10	10.5	4.3	8.7	4.6
20	20.2	4.3	18.7	4.6
100	101.0	4.4	100.7	4.6
200	200.9	4.5	200.5	4.6
300	301.4	4.4	300.8	4.5
400	401.9	4.0	401.0	3.8
500	501.3	3.0	500.4	2.9
600	601.8	3.9	600.8	3.6

 $delay_{meas} = (mean_{meas} - mean_{offset}) \cdot 3.05 \ ps$

$$\sigma_{time(2ch)} = sigma_{meas} \cdot 3.05 \ ps$$

The analysis results for the measured delays show an **excellent agreement (within 2 ps)** with the programmed delays

Data analysis and results (3)

The $\sigma_{time(1ch)}$ resolution value for each dataset is estimated, using the following:

$$\sigma_{\text{time}(1\text{ch})} = \frac{\sigma_{\text{time}(2\text{ch})}}{\sqrt{2}}$$

The **1-channel resolution** measured for both TDCs, **within a time interval of 600 ps**, is found considering the **mean** and the **standard deviation** for all 9 measurements

Test beams April-June 2024 (PS at CERN)

Proton beam

power suppliers, NIM logic modules and oscilloscope

Proton beam (10 GeV)

Sensor box including **four layers (LGADs** and **SiPMs)**:

- L4: LGAD signal used as the trigger signal
- L3, L2, L1: SiPM sensors connected to TDC input channels

Readout electronics box including:

 the DAQ chain: the PicoTDC board and the LIROC FEB

at TB of June/July 2024, five layers were employed and both the TDCs on board were used!

Conclusions and overlook

- we developed a board providing fast timing measurement on 128 channels
- we measured a picoTDC resolution as low as 3 ps, as expected
- we developed a family of pFEB boards to allow an easy connection to different detectors / front end electronics
- intensive use at on-going test beams in the context of AIDAInnova and ALICE3 R&D
- upcoming plans include:
 - developments of other generic FMC-PFEB cards (LVDS Sub-LVDS adapters, etc.)
 - implementation of the data transfer over the optical link and USB-C
 - irradiation tests of some components
 - use the board as "open tool" to engage master students

Thanks !!!

Backup

A family of picoTDC compatible Front-End Boards (3) positive

