The DAQ software for ATLAS Pixel Tracker system testing for HL-LHC

Wael Alkakhi¹, Olivier Arnaez², Francesco Crescioli³, Liam Foster⁴, Bruce Gallop⁵, Timon Heim⁶, Simon Huiberts⁷, Ondrej Kovanda⁸, Elise Le Boulicat⁹, Luc Le Pottier⁴, Lingxin Meng¹⁰, Maria Mironova⁶, Simone Pagan-Griso⁶, Elisabetta Pianori⁶, Ryan Quinn¹¹, <u>Angira Rastogi⁶</u>, Andre Rummler¹², Zhengcheng Tao¹¹, Emily Anne Thompson⁶, Alex Toldaiev¹³, Matthias Wiitgen¹⁴

¹University of Gottingen, ²Université Savoie Mont Blanc, ³LPNHE, ⁴UC Berkeley, ⁵RAL, ⁶Lawrence Berkeley National Laboratory, ⁷University of Bergen, ⁸University of Oregon, ⁹Yale University, ¹⁰Lancaster University, ¹¹University of British Columbia, ¹²CERN, ¹³Indiana University, ¹⁴SLAC

Introduction

The ATLAS experiment is preparing for the High-Luminosity LHC era, by replacing the current innermost detector with an advanced all-silicon tracker (pixels and strips) to withstand radiation damage and increased particle activity. Pixel module quality control spans various production stages which necessitates a robust data acquisition software capable of handling high data rates and MHz calibrations. Yet Another Rapid Readout (YARR) software, adaptable to diverse hardware platforms including ATLAS Phase-2 readout board i.e. FELIX, facilitates these testing scenarios.

for FE calibration

Data Loop

FE data

processor

ls all data

Calibrati

Analysis

Yes

No

No

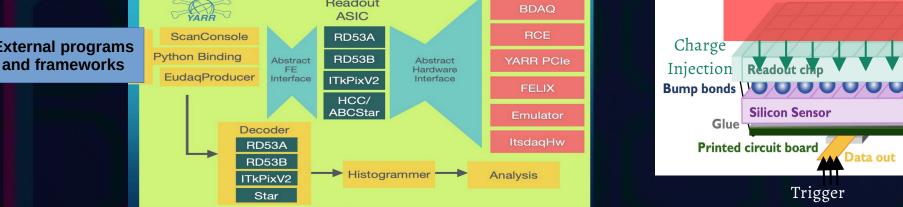
Data

Yet Another Rapid Readout (YARR)

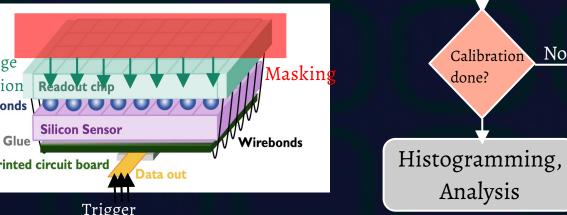
Smart data acquisition software supporting various readout ASICs (silicon pixels & strips).

Interfaces with diverse FPGA-based readout boards through PCIe link or ethernet.

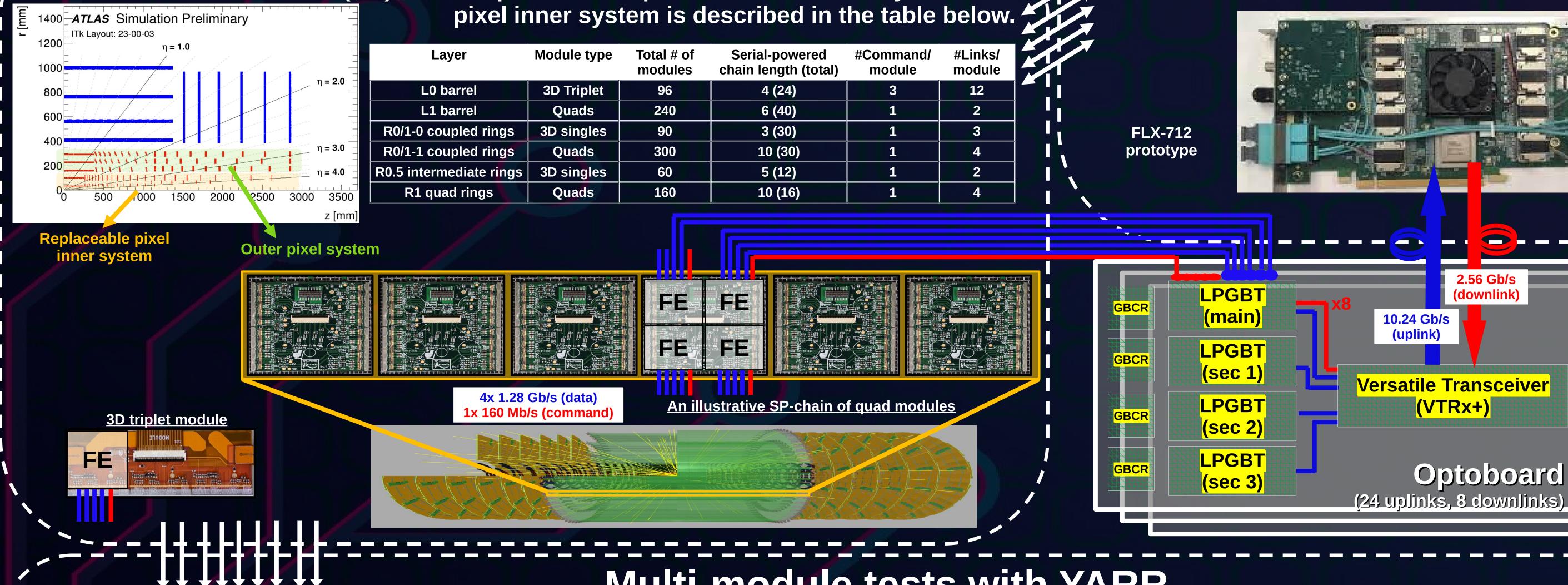
ATLAS Phase 2 readout system


□ The Front-End Link eXchange (FELIX) system is an interface between the trigger and detector electronics and commodity switched networks.

It uses FPGAs on server-hosted PCIe boards to pass data between custom data links connected to the detector as well as LHC clock and trigger information to the on-detector electronics. **The host system memory over a PCIe interface then** routes data to network clients, such as the Software **Readout Drivers (SWROD) to build event fragments,** buffer data, perform detector-specific processing and provide data for the ATLAS High Level Trigger. Readout and configuration of on-detector electronics communication will rely on the Low power GigaBit Transceiver (LpGBT) radiation tolerant protocol with Versatile Link, developed at CERN.


Numerous applications for on-detector electronics such as setting up the configuration, performing calibrations and running online diagnostics, in lab-scale test setups as well as testbeams and real detector operations.

Modular by design such that conceptual pieces are separated in individual libraries with well-defined scope, functionality and interfaces. □ FE data processor is highly configurable, pipelined, and therefore

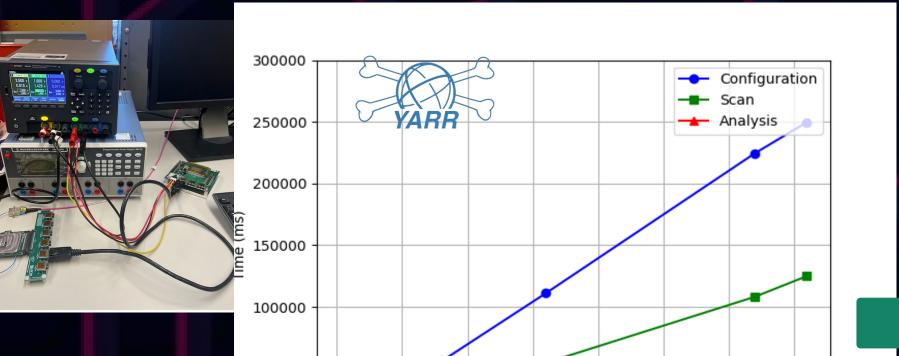

naturally scalable.

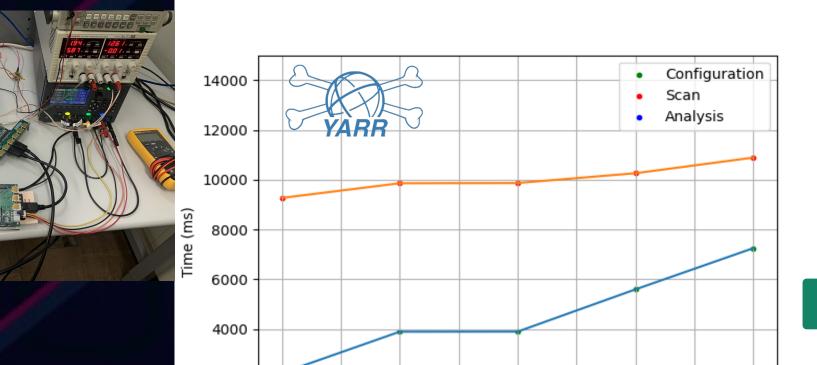
The ATLAS ITK Pixel detector for HL-LHC

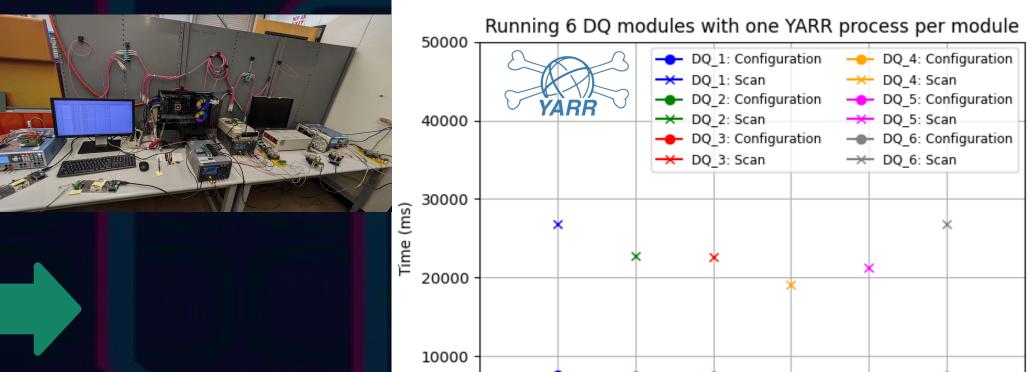
Detector	#FELIX cards	#Uplinks (data)	#Downlinks (command)	Uplink BW (Gb/s)	Downlink BW (GB/s)	Link protocol
ITk Pixel	220	4684	1564	10.24	2.56	LpGBT
ITk STrips	76	1824	1552	10.24	2.56	LpGBT

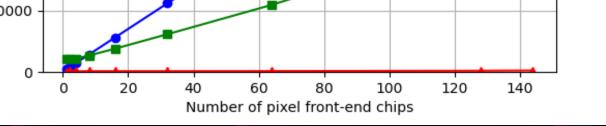
A full-silicon Inner Tracker (ITk) made of pixel and strip subdetectors. The layout of the 🥂

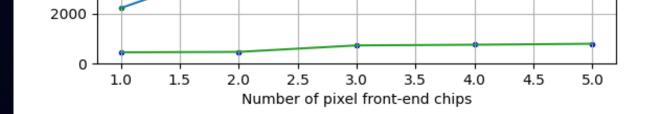
Layer	Module type	Total # of modules	Serial-powered chain length (total)	#Command/ module	#Links/ module	
L0 barrel	3D Triplet	96	4 (24)	3	12	
L1 barrel	Quads	240	6 (40)	1	2	
R0/1-0 coupled rings	3D singles	90	3 (30)	1	3	
R0/1-1 coupled rings	Quads	300	10 (30)	1	4	
R0.5 intermediate rings	3D singles	60	5 (12)	1	2	
R1 quad rings	Quads	160	10 (16)	1	4	

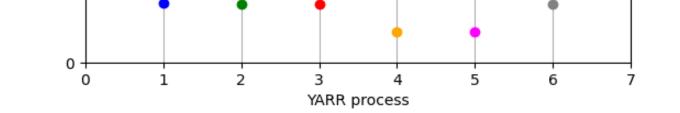



Multi-module tests with YARR


Running digital calibration with up to 144 virtual FEs on a single YARR process at 5 KHz trigger frequency and 100 charge injections.


Running digital calibration with 5 ATLAS ITkPix v1.1 FEs on a single YARR process at 5 KHz trigger frequency and 100 charge injections.


Running digital calibration with 6 ATLAS ITkPix v1.1 digital quad modules on one YARR process each, at 5 KHz trigger frequency and 100 charge injections.



Conclusion & future work

YARR has been successfully performing module electrical QC tests with diverse commercial as well as ATLAS phase-2 PCIe FPGA-based readout boards. □ FE calibrations with YARR have been demonstrated to work without failure with multiple virtual and real electrical links.

Next, perform data transmission tests with YARR and **FELIX** on a serial-powered chain, and also in a FE linksharing configuration as in the realistic detector scenario. Furthermore, enhancing YARR performance for FELIX hardware by parallelization to ensure scalability and lossless readout.

A serial-powered chain of 8 quad modules at LBNL

References

II i. The ATLAS collaboration, Technical Design Report for the ATLAS Inner Tracker Pixel Detector, CERN-LHCC-2017-021 (2017), https://cds.cern.ch/record/2285585. **II** ii. The ATLAS TDAQ collaboration, FELIX: the Detector Interface for the ATLAS Experiment at CERN, EPJ Web of Conferences 251, 04006 (2021), https://doi.org/10.1051/epjconf/202125104006. II iii. The ATLAS collaboration, Expected Size and Readout Rate of the Data of the ATLAS ITK Pixel Detector, ATL-ITK-PUB-2022-001 (2022), https://cds.cern.ch/record/2800852. iv. The ATLAS collaboration, The Opto-electrical conversion system for the data transmission chain of the ATLAS ITk Pixel detector upgrade for the HL-LHC, ATL-

- ITK-PROC-2021-003 (2022), https://cds.cern.ch/record/2773360.
- v. Timon Heim, YARR A PCIe based readout concept for current and future ATLAS Pixel modules, J. Phys.: Conf. Ser. 898 032053 (2017).

TWEPP 2024 Topical Workshop on Electronics for Particle Physics, Glasgow, Sep 30th – Oct 4th