ATLAS The End-of-Substructure card production of the ATLAS ITk Strip Upgrade

Anders Palmelund⁴, Andre Filipe Arranca Menezes Trigueiros da Silva¹, Artur Lorenz Boebel, Cameron Michael Garvey³, Harald Ceslik¹, Ingrid-Maria Gregor^{1,2}, James Michael Keaveney³, Lars Rickard Strom¹, Lukas Bauckhage^{1,2}, Marcel Stanitzki¹, Mogens Dam⁴, Peter Goettlicher¹, René Stennow Gotfredsen⁴, Sara Ruiz Daza¹, Sergio Diez Cornell¹, Stefan Schmitt¹

¹Deutsches Elektronen-Synchrotron (DESY), ²University of Bonn, ³University of Cape Town, ⁴University of Copenhagen

The ATLAS Inner Tracker (ITk)

Quality Control (QC) Procedure

Testcoupons (CTCs):

Testbench 2: Climate Chamber \blacktriangleright 10 × at -35 °C + 10 × at 25 °C ► Full function-test warm+cold

Layout of the ATLAS ITk [1].

- **High-Luminosity LHC** (HL-LHC) upgrade planned for LS3 2026-2028
- \Rightarrow Increased pile-up (up to 200) and radiation damage
- ATLAS inner detector replaced by Inner Tracker (ITk)
- All-silicon detector with pixel and strip sensors
- Higher granularity, increased radiation hardness

Resistance & Impedance, Bond-wire pull-test

Production workshop (DESY):

- ► Automatic Optical Inspection (AOI)
- Flying probe test: Impedance of each net
- X-Ray images: at ISIT Fraunhofer Institute

► 3D X-ray of BGAs

Testbench 1: Reception test

- ► Database entry, Optical+IR imaging
- ► Flatness measurement, Basic electrical tests

Testbench 3: High-voltage test

► Every HV line ramped to 1.1 kV, measure leakage current

Testbench 4: Needle Prober

- ► Needles under board connect to test-pads
- **Bit-Error-Rate-Test** (BERT) on all E-links
- Record eye-diagrams (up- & down-links)
- Reference voltage calibration

Production & QC Status

Production and QC Statistics:

Layout of petals (top) and staves (bottom)

- Inner cylinder: Pixel system
- Outside: Strip system (ITk Strip)
 - ► 4 barrel layers built from **staves**
 - ► 6+6 endcap disks built from **petals**
 - **Each** stave/petal has a pair of **End-of-Substructure** (EoS) cards (main+secondary) for data, control and power connection to ITK Strip modules from outside detector

The End-of-Substructure Cards (EoS)

- > 14+2 different EoS card flavours for Stave+Petal, \approx 1600 cards in total (+ spares & preproduction)
- Power & HV distribution, data transmission, trigger and control \blacktriangleright Up to 14 differential pairs from modules and 10 Gbit s⁻¹ optical links to off-detector systems

IpGBT: FEC-errors within IpGBT:

- ► <u>FPGA</u> counts 64 bit-frames with erroneous checksum (CRC) on 10 Gbit s⁻¹ up-links
- ► lpGBT has **forward-error correction** (FEC) counter <u>on 2.5 Gbit s⁻¹ down-links</u> (256 bit-frames)
- \blacktriangleright 1.5 \times 10¹² frames tested
- Some EoS have **non-zero** FEC counter during BERT (TB4): $O(10^{0}) - O(10^{4})$ frames
- **•** Boards with FEC errors also have **asymmetric eye diagrams**

IpGBT: Cold failure: Reset of IpGBT:

During cold tests (TB2): some lpGBTs not responding to reset command or any other signal

300

delay [ps]

Versatile Link PLUS (VL+) transceiver module (VTRx+) for optical links

2.5V

► 2-stage DC-DC buck-converters for 2.5 V and 1.2 V power supplies

CERN-ASIC Group has confirmed both issues

EoS production is stopped, QC of already produced cards continues

Lessons learned

Carefully designed QC essential to catch problems during production

References

[1] ATLAS Collaboration. ATLAS Inner Tracker Strip Detector: Technical Design Report. ATLAS-TDR-025; CERN-LHCC-2017-005. 2017.

