

Status and Challenges of the Powerboard ATLAS ITK Production for the ATLAS ITK Strip Endcap

Roland Koppenhöfer 1 and Dennis Sperlich 1 for the Freiburg ITk Strips Group

ATLAS ITk Strip Detector

- ATLAS: general-purpose detector at Large Hadron Collider at CERN
- New all-silicon tracking detector (ITk) for High-Luminosity LHC
- ITk Strip detector: strip modules located at radii $r \ge 384 \,\mathrm{mm}$
 - ITk Strip barrel: staves with 14 detector modules per side
 - ITk Strip endcap: petals with nine detector modules per side
 - Radially oriented strips in **six module flavours** *R0* to *R5*

Endcap Strip Module Design

- Silicon sensors:
- 320 μ m thick, n^+ -in-p doped
- Hybrids: glued onto silicon sensor
 - Polyimide flexible PCBs (flex) housing readout and aggregation ASICs

Powerboard: glued onto silicon sensor

- Polyimide flexible PCBs housing voltage sources
- On-module DC-DC buck converter bPOL12V for hybrid(s) power
- Linear regulator linPOL12V for ASIC power
- Control and monitoring ASIC for voltages and temperatures (AMACStar)
- High voltage filter circuitry and GaN FET HV-MUX for sensor biasing

Flex Production and Testing Flow

Assembly Status

Pre-production:

- 270 powerboards assembled (\approx 45 per type)
- Electrical QC done for 108 powerboards: yield 93%

Production:

- Slow ramp-up to validate latest design since May 2024 \Rightarrow 126 powerboards until 08/2024
- 5600 powerboards to be assembled until Q2/2026
- Necessary assembly rate in full production: 8 powerboards / week / type
- Testing capacity: 15 powerboards / week / type

QC and QA Procedures

Flex QC (pre and post SMD)

All flexes:

- Cleaning and visual inspection
- Envelope check

Individual flexes per sheet:

- Thickness measurement
- Thermal cycling (reflow profiles)
- Bond pull tests
- R and C measurements
- Metrology

Flex QA (pre and post SMD)

- Irradiation tests
- Thermal shock and cycling tests

Electrical QC

All powerboards:

- Electrical tests at 20°C and -50°C
- 10 thermal cycles (-50° C to $+30^{\circ}$ C)
- 100 h operation at 3 A load

Electrical QA (planned)

Powerboards on a sample basis:

- Additional thermal cycles ($n \gg 10$)
- Operation at 3 A load for $t\gg 100\,\mathrm{h}$
- Irradiation and magnetic field tests performed on module level

Design Changes during Pre-Production

- Limited availability of powerboard types during prototyping
 - ⇒ Few module types first properly assembled in pre-production

Increased Noise on R3, R4 & R5 modules: presented at TWEPP 2023

- ullet Restriction in GND plane o high impedance in GND path of input pi filter
- Re-arrangment of components and GND plane locations
- Additionally increase inductance of input pi filter

Design with GND plane restriction (red arrow)

Updated flex design

"Concave" Powerboards:

- Insertion simulation of petals: near collision of R5 shieldbox and carbon fibre observed
- Outline change for R4 & R5 flex

Voltage Ripples on bPOL Output;

- 01/2024: Modules built from latest powerboard batch show increased noise
- Correlation with voltage ripples on bPOL output line
- Suspected cause: broken vias due to batch-related flex quality issue
- Overlooked in electrical QC due to rapid prototyping assembly
- Developed additional electrical QC tests

bPOL output voltage for normal powerboards

Voltage ripple for problematic powerboard

Conclusions and Outlook

- Flex and electrical QC procedures at University of Freiburg established
- Design changes during pre-production necessary to solve weaknesses:
 - Latest observed noise problems due to batch-related flex quality issue
- Flex design and QC procedures succesfully adapted
- Production started and ramp-up ongoing