

Radiation Testing of New Readout Electronics for the CMS ECAL Barrel

Nico Härringer On behalf of the CMS collaboration 30. September – 4. October 2024, Glasgow

General purpose detector located at the LHC, CERN

- General purpose detector located at the LHC, CERN •
- Consists of five bigger subdetectors: •

- General purpose detector located at the LHC, CERN
- Consists of five bigger subdetectors:
 - Pixel
 - Tracker
 - Electromagnetic Calorimeter (ECAL)
 - Hadronic Calorimeter (HCAL)
 - Muon stations

- General purpose detector located at the LHC, CERN
- Consists of five bigger subdetectors:
 - Pixel
 - Tracker
 - Electromagnetic Calorimeter (ECAL)
 - Hadronic Calorimeter (HCAL)
 - Muon stations

- General purpose detector located at the LHC, CERN •
- Consists of five bigger subdetectors: ٠
 - Pixel
 - Tracker
 - Electromagnetic Calorimeter (ECAL) —
 - Hadronic Calorimeter (HCAL)
 - Muon stations _

- General purpose detector located at the LHC, CERN
- Consists of five bigger subdetectors:
 - Pixel
 - Tracker
 - Electromagnetic Calorimeter (ECAL)
 - Hadronic Calorimeter (HCAL)
 - Muon stations
- Will receive major upgrades for the High-Luminosity LHC (HL-LHC) starting in 2026
 - Upgrade of ECAL and HCAL «barrel»

- General purpose detector located at the LHC, CERN •
- Consists of five bigger subdetectors: •
 - Pixel
 - Tracker
 - Electromagnetic Calorimeter (ECAL) —
 - Hadronic Calorimeter (HCAL)
 - Muon stations _
- Will receive major upgrades for the ٠ High-Luminosity LHC (HL-LHC) starting in 2026
 - Upgrade of ECAL and HCAL «barrel»

- Why do we do this upgrade of the ECAL barrel?
 - Increase in pileup (from ~40 to 150/200)
 - Implement faster electronics (sampling at 160 MHz)
 - Redesigning the Trigger system
 - Increased trigger rates from 100 kHz to 750 kHz and higher hardware-level trigger latency (12.5 us)
 - Mitigating APD Dark Current
 - Lower cooling temperature from 18°C to 9°C

- Upgrade of readout electronics for all 2,448 ECAL towers.
 - Very Front End card (VFE)
 - Calorimeter Transimpedance Amplifier (CATIA)
 - Two gain stages
 - High gain (HG), low gain (LG)
 - Internal test pulses
 - Lisbon-Torino ECAL Data Transmission Unit (LiTE-DTU)

- Upgrade of readout electronics for all 2,448 ECAL towers.
 - Front End card (FE)
 - Four Low Power Gigabit Transmission chips (LpGBT)
 - Master-Slave arrangement
 - Optical interface (Versatile link plus)
 - Slow Control Adapter (GBT-SCA)
 - Low Voltage Regulator card (LVR)
 - Four DC-DC converters
 - Low Dropout Regulator (LDO)
 - Powers GBT-SCA

- ... and the back end (for ECAL and HCAL)
 - Barrel Calorimeter Processor (BCP) card
 - Analyze received data
 - Trigger primitive generation
 - APD spike rejection algorithm
 - FE clock and control signals

Test objectives

- First irradiation campaign done in CERN High energy AcceleRator Mixed field (CHARM) in July 2023
 - 17 days of irradiation, access times included
 - Uniform radiation field —

- First irradiation done at the CERN High energy AcceleRator Mixed field (CHARM) facility in July 2023
 - 17 days of irradiation, access times included
 - Uniform radiation field
- Second irradiation done using the Proton Irradiation Facility (PIF) at the Paul Scherrer Institute, CH
 - About 16 hours of irradiation (distributed over 4 nights)
 - Non-uniform irradiation (Gaussian profile)

CMS

CMS,

CMS ECAL Readout Tower Irradiation Tests, TWEPP, Glasgow

Test objectives

Communication - CHARM

CMS

Communication - CHARM

SEUs (CATIA) - CHARM

CMS

SEUs (CATIA) - CHARM

Test objectives

Summary

Survived dose rates >1000x higher than foreseen in HL-LHC
Hadron fluxes >200x higher

CMS ECAL Readout Tower Irradiation Tests, TWEPP, Glasgow

Thank you for listening!

CMS ECAL Readout Tower Irradiation Tests, TWEPP, Glasgow

CATIA

- CAlorimeter TransImpedance Amplifier (CATIA)
 - Amplifies scintillation pulse collected from the APD
 - Two gain stages: G10 (high gain) and G1 (low gain)
 - I2C interface
 - Has a current source for internal test pulses to test readout electronics

NOTRE DAME CMS ECAL Readout Tower Irradiation Tests, TWEPP, Glasgow

LITE-DTU

• Lisbon-Torino ECAL Data Transmission Unit (LiTE-DTU)

- Digitizes CATIA-amplified pulse with two dedicated 12-bit ADCs at 160 MHz in parallel
- Data Compression and Transmission Unit
 - Internal PLL
 - Gain selection
 - If G10 ADC is saturated, all G1 samples in a window around the saturated ones are taken
 - Data compression and formatting in 32-bit words
 - Data serializing and streaming (1.28 Gb/s)

VFE card functionality - ASICs

New electronics – why:

- Longer level 1 trigger latency (12.5µs)
- Mitigates problems induced by high radiation levels at HL-LHC
- Introduces precision time measurement into ECAL: resolution 30 ps for E > 50 GeV
- Introduces data streaming: trigger primitives generation off-detector

CATIA (CEA Saclay)

- Trans-impedance amplifier ~35 MHz bandwidth
- Two gains differential outputs: 1 and 10
- Pedestal adjustment
- Internal test-pulse generator
- Internal temperature sensor
- I2C interface

LITE-DTU (INFN Torino, LIP Lisbon)

- Dual 12bit ADC, sampling at 160 MS/s
- 160 MHz CLK and fast control input
- internal PLL
- Lossless data compression
- Data streaming at 1.28 Gbit/s
- I2C interface

Barrel Calorimeter Processor - Layout

Low Voltage Regulator (LVR) card

- Low voltage for VFE and FE
 - VFE:
 - CATIA: 2.5 V
 - LITE-DTU: 1.2 V
 - FE:
 - LpGBT + Optical Link: 2.5 V and 1.2 V
 - GBT-SCA: 1.5 V
- Hosts four DC-DC converters
 - bPOL12V
 - linPOL12V
- Calculated power consumption per Readout Tower: 40 W
- Amount needed: 2448
 - Thermal cycling, Burn-In and testing (external company)

Steps HG Optimization:

• Loop:

- set a value of CATIA input common mode voltage (Vicm)
- acquire pedestals and check if average is between 20 and 40 ADCs
 - yes: break the loop
 - no: move to the next Vicm value
- All channels have now pedestals between 20 and 40 ADCs
- Apply a digital subtraction to move all channels to avg of 20 ADCs

Repeat same procedure for LG Optimization

Test setup

CHARM – FLUKA Simulation

- First irradiation campaign done in CERN High energy AcceleRator Mixed field (CHARM) in July 2023
 - 17 days of irradiation, access times included —
 - Uniform radiation field _

Dose goals

ETHZÜRICH UNIVERSITY OF NOTRE DAME CMS ECAL Readout

CMS ECAL Readout Tower Irradiation Tests, TWEPP, Glasgow

Readout equipment

Optical patch panel

Tower readout PC

- Controls tower readout (connected to BCP)
- Controls power supplies and DAQ6510
- Stores data on HDD

Mini ATCA crate with BCP

- Converts optical pulses to digital data
- Decompresses data and sends it to readout PC

Keithley 2401 Source/Meter

- Provides +400V bias voltage for APDs
- Measures Dark Current

R&S HMC804x Power Supplies

• Powers tower and two cooling fans

Keithley DAQ6510

 Measures output voltages of LVR

Dark Current readout PC (not visible)

- Controls Keithley 2401
- Stores data on HDD

CMS

Irradiation map

CMS

ERN

Data Processing Methodology for CATIA test pulses

- Steps in Data Processing
 - 1. Amplitude Extraction 📊
 - 1. Generate test pulses using CATIA.
 - 2. Record pulse shape and fit to determine the highest point as the amplitude.
 - 2. Skimming of Outliers
 - 1. For each cycle, form a set of amplitudes.
 - 2. Remove amplitudes further than 3 sigma (standard deviations) away from the mean of the dataset.
 - 3. Analysis Based on Trends 📈 📉
 - Clear Trend in Mean (Positive or Negative)
 - 1. Use the mean of the first three skimmed datasets.
 - 2. Calculate the <u>relative deviation (drift)</u> of subsequent datasets from this mean.
 - No Clear Trend:
 - 1. Calculate an overall mean of all skimmed datasets.
 - 2. Determine the <u>relative deviation (drift)</u> for each dataset from this overall mean.
- Points 2 and 3 also applied when extracting the raw RMS Noise distribution

Backup - Results

Dark current - CHARM

CMS

Dark current - PSI

CMS

