HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

Fabian Hummer on behalf of the CMS collaboration

Contribution to TWEPP 2024

3rd October 2024

CMS needs fresh endcap calorimeters...

... and that's how they will look like

iP=

HGCAL in a nutshell

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware fabian.hummer@kit.edu

HGCAL in a nutshell

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware fabian.

i2

The HGCAL Readout Chain

- Trigger data:
 - Sent for each bunch crossing
 - Reduced formats, e.g. sum of multiple sensor cells
- DAQ data:
 - Full event information (ADC/ToT + ToA)
 - Only sent on demand (L1 trigger accept)

Detailed info on the data concentrators:

TWEPP	[Talk] J. Hoff: ECON-D and ECON-T: Design and
2024	Production Testing
	[Talk] M. Lupi: Functional Verification for Endcap
ASIC	Concentrator ASICs in the High-Granularity
Session	Calorimeter Upgrade of CMS

Core Feature: shared* Readout Chain

ECON'S Wagon ECON'S Engine

Detector module HGCROC (SiPM and Silicon version)

<u>Passive connector board</u> different shapes \rightarrow integration

<u>Motherboard</u> Data to fiber optics (IpGBT, VTRx+)

* with some specific parts to each

Wingboard

Motherboard

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

6

ECON's

1 year ago: First integration of full vertical slice

Beam Area: Front-end Control Room: Back-end

2023: beam tests at SPS:

- Two sensor modules with the complete preseries front-end
- Full readout chain until the Serenity
- First time this system was in a beam test!
- \rightarrow a huge success for HGCAL!

TWEPP[Talk] R. Shukla: The CMS HGCAL trigger data receiver2023[Poster] M. Vojinovic: CMS HGCAL Electronics Vertical Integration System Tests

1 year ago: First integration of full vertical slice

2023: beam tests at SPS:

icon senso

hexahoai

But wait... what about the scintillator tile modules?

DAO PC

Two sensor modules with the complete preseries front end

Full readout chain until the Serenity

- First time this system was in a beam test!
- → a huge success for HGCAL!

TWEPP [Talk] R. Shukla: The CMS HGCAL trigger data receiver2023 [Poster] M. Vojinovic: CMS HGCAL Electronics Vertical Integration System Tests

Serenity-

Tileboard \rightarrow Serenity readout: Step 1

- GBT-SCA provides I²C, GPIOs, ADCs, DACs to tileboards, not present on silicon modules
- GBT-SCA on Versatile Link Development Board (VLDB), lpGBT and VTRx+ on VLDB+
- Custom adapter board to test GBT-SCA connection via IpGBT eLinks

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

Tileboard \rightarrow Serenity readout: Step 1

12

- GBT-SCA provides I²C, GPIOs, ADCs, DACs to tileboards, not present on silicon modules
- GBT-SCA on Versatile Link Development Board (VLDB), lpGBT and VTRx+ on VLDB+
- Custom adapter board to test GBT-SCA connection via lpGBT eLinks

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware fabian.hummer@kit.edu

- Fall 2023: motherboard not yet available → VLDB+ = "motherboard without ECON's"
- Custom adapter board to connect tileboard to VLDB+ \rightarrow develop FW and SW
- First readout of tileboard data with Serenity in January 2024

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

iPE

Tileboard \rightarrow Serenity readout: Step 2

- Fall 2023: motherboard not yet available → VLDB+ = "motherboard without ECON's"
- Custom adapter board to connect tileboard to VLDB+ \rightarrow develop FW and SW
- First readout of tileboard data with Serenity in January 2024

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

i2

- Winter 2023: two pre-series motherboards assembled at KIT
- Motherboard with two ECON-T's, but no ECON-D (additional lpGBT instead)
- Characterization of full vertical stack with Serenity-Z1.1

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

i2=

- Winter 2023: two pre-series motherboards assembled at KIT
- Motherboard with two ECON-T's, but no ECON-D (additional lpGBT instead)
- Characterization of full vertical stack with Serenity-Z1.1

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

i22

17

- Spring 2024: Validation of the full readout chain, getting ready for beam tests
- No ECON-D \rightarrow direct readout of HGCROC frames to DAQ PC
- No DTH prototype at KIT \rightarrow 1 x 10G ethernet from Serenity to DAQ PC

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware fabian.hummer@kit.edu

First Beam Test: July/August this year

- Beam test at SPS H2
- 3T superconducting magnet
- 120 200 GeV electrons and muons
- *Separate* readout systems for silicon sensors and tile modules
- Two layers of 3 silicon sensors
 - Serenity-Z1.2 with VU7P
 - DTH-p1-v2 \rightarrow DAQ PC
- Two tile modules
 - Serenity-Z1.1 with KU15P
 - DAQ PC via 10G ethernet

Stable operation in 3T magnetic field Tested 3 different field orientations

- Synchronous readout of tile modules on
 - the same motherboard
 - two different motherboards
- Readout of ECON-T data with tileboards
- All measurements with
 - **HGCROC** version 3a
 - ECON-T-p1

- New motherboard with ECON-D not yet available
- Common beam test firmware expects ECON-D packets
- Only trigger readout possible for now
- Need to understand DAQ/trigger correlation first

September Beam Test: DAQ/trigger correlation

16000

14000

12000

10000

8000

6000

4000

2000

0

sum

101

PDC

f(x) = x

CMS HGCAL data

private work

- First week: commissioning of new tile modules using our Serenity-Z1.1 setup
 - Two modules with HGCROC v3b
 - Determine values for thresholds and calibration parameters (ADC, ToA, ToT)
 - Extensive datasets with muons and EM showers
- Understanding of DAQ and trigger correlation
 - Figure: energy in a super trigger cell vs.
 Sum of ADC and ToT of DAQ channels

 10^{3}

Figure: Time response to EM showers of super trigger cells from 3 different layers

September beam test: unified readout

Serenity

Z1.2

DTH

p1-v2

PC

- Second week: connect tile modules and silicon modules to Serenity-Z1.2 (VU7P)
- Full readout chain for both sensor types: •

IpGBT

ROC

3b

ECON

- Simultaneous readout of trigger data for silicon sensors and scintillator tileboards
- No DAQ readout for tileboards (no ECON-D \rightarrow different data format)
- DAO A5 tileboard | STC 0 CMS HGCAL data private work Energy B12 tileboard | STC 4 CMS HGCAL data private work STC Energy 25 50 75 100 125 150 Λ Time (ns)

 10^{-4}

10-5

 10^{-6}

 10^{-3}

 10^{-4}

Silicon Laver 3 - ECON-T 0 | STC 0

CMS HGCAL data private work

September beam test: unified readout

- Second week: connect tile modules and silicon modules to Serenity-Z1.2 (VU7P)
- Full readout chain for both sensor types:

- **Simultaneous** readout of trigger data for silicon sensors and scintillator tileboards
- No DAQ readout for tileboards (no ECON-D → different data format)

Info on HGCAL DAQ Firmware and some more beam test results: **TWEPP 2024**[Poster] M. Rosado: Back-end DAQ system prototype testing and integration on a full detector test system for the CMS HGCAL detector

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

25

iPE

Now we have this...

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

fabian.hummer@kit.edu

[Talk] T. Mehner: Lessons from integrating CMS Phase-2 back-end electronics

and first results from Serenity-S1, a production optimised ATCA blade

125

But what about Serenity-S?

A lot happend since last year's TWEPP...

- 12 boards assambled so far
 - 6x Serenity-S1.1 \rightarrow initial run with "teething issues"
 - 6x Serenity-S1.2 → fixed FireFly footprint \heartsuit
- Integration in firm-/software frameworks almost done
- Commissioning ongoing but cards are close to becomming usable by detector groups
- Next step: pre-series with 50 Serenity-S1.3 boards

TWEPP

2023

- PCB optimisations targeting the manifacturing process

Summer 2024: Efforts started at KIT to bring HGCAL to Serenity-S

Integration of HGCAL FE + Serenity-S

 Beam Test Firmware successfully ported from Serenity-Z1.2 VU7P to Serenity-S1.2 VU9P

Front-end Tests

• Successfull IC and EC communication with the SiPM-on-tile front-end

Back-end Tests

• No DTH prototype at KIT \rightarrow Test still pending

Conclusions and Summary

- HGCAL SiPM-on-Tile readout chain validated with Serenity-Z
 - Iterative integration of tile modules with Serenity, using custom adapter hardware
 - Currently using pre-series motherboard
- Successful beam test of SiPM-on-tile system using Serenity-Z
 - Stable operation in 3T magnetic field
 - Readout of DAQ and trigger data from HGCROC versions 3a and 3b
- *Simultaneous* readout of scintillator tileboards and silicon sensors using Serenity-Z
 - Currently only trigger readout possible
 - Next step: production version motherboard with ECON-D
- Commissioning of Serenity-S ongoing, first tests with HGCAL front-end modules

Conclusions and Summary

- HGCAL SiPM-on-Tile readout chain validated with Serenity-Z
 - Iterative integration of tile modules with Serenity, using custom adapter hardware
 - Currently using pre-series motherboard
- Successful beam test of SiPM-on-tile system using Serenity-Z
 - Stable operation in 3T magnetic field
 - Readout of DAQ and trigger data from HGCROC versions 3a and 3b
- *Simultaneous* readout of scintillator tileboards and silicon sensors using Serenity-Z
 - Currently only trigger readout possible
 - Next step: production version motherboard with ECON-D
- Commissioning of Serenity-S ongoing, first tests with HGCAL front-end modules

Backup

Silicon Modules – Hexaboards

- For areas with high radiation
- 620 m² of active area
- Front-end ASICS: HGCROC, I DO and RAFAFI
- Low density and high density version
- Wire bonded to Si sensor (8 inch wafer)
- Readout electronics: engines (VL+, ECONs) and wagons (passive)
- 30k boards, 6M channels

Low Density Hexaboards 3 x HGCROC 192 Si cells (1.1 cm²)

High Density Hexaboards 6 x HGCROC 432 Si cells (0.5 cm²)

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

Tile Modules – Tileboards

- For areas with lower radiation
- 400 m² active area: scintillator + SiPM
- Front-end ASICS: 1-2 x HGCROC, GBT-SCA, 1-2 x ALDO
- Scintillator tiles placed directly on PCB, 4-30 cm² per tile
- LED system for calibration
- High density version with smaller tiles under consideration
- Readout electronics: Motherboard (VL+, ECONs, RAFAEL) and wingboards (passive)
- 4k boards, 240k channels

i2

HGCAL's sensors in a nutshell

- Scintillator tile modules:
 - Plastic scintillator tiles read out by SiPMs
 - For lower-radiation environment
 - Sensor cell size 4 cm² ... 30 cm²
 - 370 m² active area, 4k modules, 240k channels
- Silicon modules:
 - Silicon sensors wire-bonded to readout PCB ("hexaboard")
 - For high-radiation regions of HGCAL
 - Sensor cell size 0.5 cm² ... 1 cm²
 - 620 m² active area, 26k modules, 6M readout channels

TWEPP [Poster] P. Antoszczuk: On-detector power distribution for CMS-HGCAL: **2024** a busbar-based approach

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware f

iP=

Silicon / SiPM-on-Tile FE Differences

	LD Hexaboard	HD Hexaboard	Tileboard / Motherboard / WB	
HGCROC	3 per LD Hexaboard	6 per HD Hexaboard	1 for most Geometries / 2 for B12 Tileboard	
GBT-SCA	N/A	N/A	1 GBT-SCA per Tileboard	
ECONs	ECON Mezzanine on the Hexaboard		2 ECON-T + 1 ECON-D on the Motherboard	
RAFAEL	1 per Hexaboard		1 per Motherboard	
lpGBT	3 per LD Engine	6 per HD Engine	2 per Motherboard (DAQ + Trigger)	
VTRx+	1 per LD Engine	2 per HD Engine	1 per Motherboard	
linPol12	Engine		Motherboard	
LDO	Hexaboard and Engine		1 on Motherboard, 2 per Tileboard	
bPol12	DCDC mezzanine on the Hexaboard		1 per Motherboard, 2 per Tileboard	
ALDO	N/A	N/A	2 per Tileboard	

Step-by-step to Tileboard readout: "What can we test when?"

	Step 1: Serenity \rightarrow VLDB+ and SCA on VLDB	<u>Step 2:</u> Serenity → VLDB+ and Tileboard (via adapter)	Step 3: Serenity \rightarrow MB \rightarrow Wingboard \rightarrow Tileboard
Slow control tests	V IpGBT + SCA only	IpGBT, SCA, HGCROC, ALDO	2-3x lpGBT, ECON-T, 1-5x SCA, 1-5x HGCROC
Fast commands	NO	YES, directly to HGCROC	🖌 YES, via RAFAEL
40MHz clock jitter measurement	NO	YES, jitter of tileboard only	YES, clock jitter of full readout chain
Bit error rate measurement	NO	YES, tileboard only	✓ YES, full readout chain → System validation
Trigger readout	NO	Raw trigger stream from HGCROC	YES
DAQ readout	NO	Raw data stream from HGCROC	Raw data stream from HGCROC
Multiple Tileboards	NO	NO	VES

HGCAL SiPM-on-Tile Full-Stack Integration with the Serenity Phase-2 DAQ Hardware

Setup for July/August beam test

Pre-series motherboards: no ECON-D

- Can't use miniDAQ firmware block from common beam test FW
- Direct streaming of ROC-DAQ packets to the DAQ PC
- 10G ethernet links

i22

Serenity-S1 FPGA Card

Figure by Torben Mehner

- Board Infrastructure
 - Xilinx KRIA SoM
 - Clock, power, PHY
 - SD, SSD
- ATCA Infrastructure
 - Backplane connectors
 - IPMC (OpenIPMC DIMM module)
 - Power input
 - Ethernet switch
- Payload
 - FireFly optical transceivers
 - VU13P FPGA
 - Clocks

