
FPGA implementation of the
HL-LHC CMS Drift Tubes
Level-1 Trigger Algorithm

A. Navarro-Tobar, J. León Holgado

Introduction - Context
● Compact Muon Solenoid: general

purpose detector at the LHC

● Muon Barrel: outermost part of the
central wheels of CMS, identifies and
tracks muons (minimum ionizing
particles that can cross CMS iron yokes)

● Drift Tubes: 5 wheels x 12 sectors, 4
chambers, each contains 3 superlayers
(4-layer blocks) provide information for
phi (2x) and theta (1x) views

● DT subdetector consists on 172k Drift
Cells. Drift time provides information on
the position of muon (the farthest from
wire, the later the hit arrives)

Alvaro Navarro Tobar - October 1st, 2024

Introduction - Upgrade Phase 2
● Trigger/readout architecture changes

● Full data streaming to Underground
Service Cavern (USC) of all DT data
(no filtering)

● Trigger can done at USC (no
radiation): bigger and faster FPGAs
(before on-detector ASIC + USC V7)

● Achieve offline-grade (SW)
performance at Level-1 Trigger (HW)

85x 42x
330T VU13P

28M Logic Cells 158M Logic Cells

Alvaro Navarro Tobar - October 1st, 2024

OBDT poster at TWEPP by Ignacio Redondo:
https://indico.cern.ch/event/1381495/contributions/6063106

https://indico.cern.ch/event/1381495/contributions/6063106

● Drift Time is up to 16 BXs (LHC Bunch Crossing 25ns)
● Muon hits can mix with hits from other muons, even

from other events
● Laterality: we don’t know a priori if a muon track passed

to the right or left of the wire
○ Tracks with same hits but different laterality are called ghosts

● Sliding window, continuous processing: we cannot do
event-based processing. A hit can form a group with
hits 32 BX apart

● When pileup/noise increase → combinatorial explosion
(number of possible pairings of hits grows very fast)

● This is for one superlayer: then we match each
segment with the ones produced in the other 2
superlayers (new combinatorial explosion, new linear
regression)

DT: problem to solve
S

up
er

La
ye

r
Alvaro Navarro Tobar - October 1st, 2024

Our algorithm
Grouping
Each new hit is paired with other hits in
its vicinity. Combinatorial explosion
under high noise. Has to keep up with hit
input rate.

Prediction
Hypotheses on wire side
laterality. Finer prediction saves
wasting expensive fitter time.

Fitting. Linear
regression.
Computationally
expensive.

Filter: reduce the combinatorial explosion. Keep only the
highest-quality segment among the ones that share hits.

Matcher: do all possible
(viable) pairings between
segments from each
superlayer. Combinatorial
explosion, again.

Fitter.
Linear
regression
again. But
with more
hits.

Filter
Reduce the
combinatorial
explosion,
again.

In each superlayer

Global
coordinates
conversion
2x arctan,
basically2x

 S
up

er
La

ye
rs

Alvaro Navarro Tobar - October 1st, 2024

Constraints

● In each FPGA (VU13P)
○ Infrastructure (gigabit links take up much space)
○ 8 chambers (algorithm in previous slide)
○ Other algorithms to come

■ Showers: see Javier Prado’s talk (next talk):
https://indico.cern.ch/event/1381495/contributions/5988789

■ Theta and theta matching
■ RPC matching

● Maximum latency ~1 µs (40 BXs)
● We’re very tight in resources, we’re very tight in latency

⇒ We must maximize operation frequency to increase computing power. We
aim for ~2 ns clock period (480 MHz = 12x LHC bunch frequency)

Alvaro Navarro Tobar - October 1st, 2024

https://indico.cern.ch/event/1381495/contributions/5988789

Grouping

● Receives 1 hit/2ns, keeps history, delivers
1 group/2ns, grouped by time and spatial
proximity

● Divide and conquer:
○ SnapshotGen: for each hit, delivers a snapshot, a

collection of “photos” of the hits received in its
vicinity in the past 16 BXs. Keeps up the pace
with the input

○ PathFinder: for each snapshot, delivers all
possible combinations of past hits with the new
hit. Can take many clks to process one snapshot

● PathFinder doesn’t keep up with the input
rate, several can be instantiated in parallel

● Processing stops when newly-generated
groups would be out of maximum latency

Group Predict Linear
regr. Filter Match Linear

regr. Filter Global
coord.

SnapshotGen
3k LUT
4k5 FFs

100% throughput

PathFinderX

400 FFs
~10 % throughput

PathFinder3

400 FFs
~10 % throughput

PathFinder2

400 FFs
~10 % throughput

PathFinder1
750 LUT
400 FFs

~10 % throughput

hits
groups

Alvaro Navarro Tobar - October 1st, 2024

Prediction

● Hit groups do not have laterality assignments
→ new explosion of workload

● Linear regression is expensive. We don’t want
to waste it with unviable candidates

● Pre-calculated Look-Up Table gives likely
acceptable laterality combinations for a group
of hits

● Input to the LUT is cell layout (geometry of
cells involved) plus coarsified time (9 → 2 bits)
of each hit

○ Coarsification is not just truncation or
rounding: optimal thresholds result of
bayesian optimizer

● Takes 600 LUT + 500 FFs
● Reduces average number of laterality

combinations per group from 2.78 to 2.16

Group Predict Linear
regr. Filter Match Linear

regr. Filter Global
coord.

Alvaro Navarro Tobar - October 1st, 2024

Linear regression

● Inputs: horizontal position of the wires, TDC
value, laterality hypothesis

● Outputs: track parameters (T0, position, slope)
and chi squared

● Ordinary Least Squares, matrix solution:
○ C matrix super expensive computationally
○ y matrix: much simpler, unavoidable (hit timestamps)

● We compute C matrix offline, store it in ROM
○ For 1 SL, ~50 rows, 200 bits each → distributed RAM
○ For 2 SL, ~1500 rows, 360 bits each → 20 Block RAM

(UltraRAM doesn’t allow ROM initialization)
● Computational load reduced to bare minimum
● Latency: 15 clock cycles
● 8 layers: 3k LUT, 4.5k FFs, 20 BRAM, 25 DSP

Reference plane

zi

slope

position

lati=+1lati=-1

xwire,i

ROM
DSP

LUT

Group Predict Linear
regr. Filter Match Linear

regr. Filter Global
coord.

Alvaro Navarro Tobar - October 1st, 2024

Filtering

● Hits must be used once, in the best-quality segment
● Arriving segments are compared with 144 previous

segments (24-BX deep history x 6 segments width):
○ May duel any (only if they share any hit)
○ May be killed by any
○ If it survives, it may kill any

● All must happen before the next segment arrives (2 ns!)
● Pipeline the input stage: before being written, each

incoming segment spends 4 cycles calculating its “duel”
result with all 144 pre-stored segments

● But… when a hit in the pipeline reaches the table, the table
may have been changed already… Incoming hits “shoot
bullets” at each other, these “bullets” also traverse the
pipeline and reach its target in the required moment

● 6k LUT, 7k FFs, 4 BRAM

Group Predict Linear
regr. Filter Match Linear

regr. Filter Global
coord.

1 segment
= 35 bits (*)

(*) Actually close to 300 bits, but unused are stored to RAM

Alvaro Navarro Tobar - October 1st, 2024

144x / 2 ns

Matching

● For 𝜙 view, pairs are made with segments from SL 1 and 3, from
present and last BX

● 108 possible combinations: assess compatibility in t0, position,
slope

● Only the best (linear regr. is expensive!) are selected for re-fitting
● Perfectly sorting data within each quality would be too expensive

(and seldom make a difference)
● We classify the candidates in N queues according to predefined

criteria (categories)
● Candidates are delivered starting from the highest-priority queue
● Currently 3 queues based only on number of hits of the combined

segment
● Resources: 1k8 LUT, 1k2 FF (pairings), ~500 LUT/FF (each queue)

Group Predict Linear
regr. Filter Match Linear

regr. Filter Global
coord.

1 SuperLayer segment = 20 bits
(Actually close to 300 bits, but unused bits are stored to RAM)

Alvaro Navarro Tobar - October 1st, 2024

Global coordinates

● Essentially 2 arctangent operations:
one for position, one for slope

● High throughput, low latency, low
resources…

● Piecewise linear approximation
● a and b coefficients stored in RAM

(loaded at configuration, different for
each chamber)

● ≤1 LSB approximation error
● Latency 4 clock cycles
● 500 LUT, 500 FF, 3 BRAM, 3 DSP

Group Predict Linear
regr. Filter Match Linear

regr. Filter Global
coord.

Alvaro Navarro Tobar - October 1st, 2024

Timing closure ● Big design, high clk freq → challenge
● Initial naive approach, out-of-context each module

with big margin (1.7 ns), failed:
○ OOC hides interconnection issues
○ Vivado placer does poor job on big designs (more random

choices more likely to make bad ones)

● Regular placement constraining is cumbersome
with our design → developed python library and
scripts to auto-generate pblocks

○ More user-friendly, way easier to maintain, with the design
still in development

● Helped identifying the netlist problems between
modules (high-fanout, insufficient piping…) and
gave vivado the boost it needed to get me those
last 150 ps

● Presented at 1st FPGA Developers Forum
(June’24)

○ https://indico.cern.ch/event/1381060/contributions/5923235
○ See Filiberto Bonini’s talk tomorrow 17:30

● Available at gitlab.cern.ch
○ https://gitlab.cern.ch/anavarro/ant_placer
○ Let me know if interested!

Alvaro Navarro Tobar - October 1st, 2024

https://indico.cern.ch/event/1381060/contributions/5923235/
https://gitlab.cern.ch/anavarro/ant_placer

Final remarks

● DT/Muon Barrel algorithm in good shape, still long way until Run 4
● Around 15000 lines of VHDL code (and counting!) plus many python helpers,

ROM generators, etc.
● Resources around 350k LUTs, 500k FFs, 1000 BRAM, 150 URAM, 850 DSP
● Current latency 20 BX (0.5 µs)

○ 12 BX processing
○ 8 BX configurable delay at the SL filter: margin for computational peaks + improve filtering

● Many different interesting/challenging problems had to be addressed, many
optimizations made

○ Varied problems: computational, dataflow modules…
● Clock frequency 480 MHz

○ Very challenging, placement was key

Alvaro Navarro Tobar - October 1st, 2024

