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EMTF Introduction

Primary Goal of Endcap Muon Track Finder (EMTF) Barrel MTF (only DT and RPC barrel)  Overlap MTF (DT, RPC and CSC)
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* EMTF builds muon tracks by associating muon stubs from 8
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* Cathode Strip Chambers (CSC)
* Resistive Plate Chambers (RPC)



Purpose of New NN

* New physics models predict long-lived particles that travel CMS simuiation 13 TeV
away from the collision pom’F b(?fore decaying mto muons 3 - prompt igger displaced trigger
* This would lead to muons originating from a vertex with a large o | = 12<inl<16 —¥
displacement from the interaction point (d,, > 10 cm) g 1— + 16<inl<21
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* Muons with vertices that have a large displacement from the 0.8 o Mm
beamline are outside of the scope of the EMTF prompt [ T
muon trigger 060 o
» Efficiency for these muons degrades quickly as the vertex is shifted - "
away from the beamline [ T L1 muon py > 10 GeV
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* Initial simulations for a displaced muon NN in EMTF, showed L YL ey
large efficiency gains for muons from displaced vertices 0.2F o Wﬂm
* Plot [1] shows efficiency gains from an early NN model, this model did - @#,, ‘. 2 o "
not fit into the FPGA but shows the potential of a new NN to expand I ] i

our trigger to handle displaced muons 0



Timing and Resource Constraints

Since 2016, we have performed prompt muon pT assignment using a Boosted Decision Tree
* TWEPP Poster Session 2017 (lots of lessons mentioned here have applied to our new NN)
* Thisis performed using external RAM, which takes five 40 MHz clock cycles
* The NN parameter assignments happens in parallel with this external pT lookup, leaving

~100 ns for the NN after track serialization

FPGA Context
* FPGA: Virtex 7 chip on MTF7 uTCA board [2]
* Resources used without the NN
e 74% of FPGA LUTs

* 76% BRAM
* 25% Flip Flops
* Synthesis and Implementation time: ~3 hours
* Small changes in logic leading to timing failures

Final NN Constraints
* Pipeline the 3 tracks to a synchronous 120MHz clock

 Useonly1 NN andinput all 3 tracks within 1 BX
* The NN has 11 120MHz clock cycles to finish one track (~92ns)
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* 13 clock cycles to finish 3 tracks, and 1 sync clk cycle on each end of the NN
* Restrict LUT usage as much as possible, basically no restriction on DSP usage

* Basically: Fit into FPGA without breaking anything else



https://indico.cern.ch/event/608587/contributions/2614813/attachments/1523109/2380324/2017_09_11_EMTF_TWEPP_poster.pdf

Neural Network Model

Single Node of DNN

Track Data

10 nodes 10 nodes
8 nodes 8 nodes
1 node 1 node

l pT ldxy

Why a Dense NN?
e Given the complexities in the CMS endcap, BDT performed better than former
manual method for assigning prompt p;
* NN allows us to take advantage of ML to handle these complexities while using
under-utilized DSP resources

Training Data

 Created in CMSSW emulator by firing a displaced single muon gun into the endcaps and
using the tracks built from these displaced muons
* Parameters:

* Flatind,, upto 120 cm
 Flatin 1/p;

Keras NN Model
* Model has an initial batch normalization layer and 3 dense layers
» All activations are Rectified Linear Units (ReLU)
* Train py and d,, separately and each gets half of the NN nodes
* Trained using logcosh loss functions (similar to Huber loss used by BDT)
* Normalization is shared between NNs, so we ‘stitch’ the NNs together before
converting to HLS using hls4ml [4] hls 4 ml .



Post Training Quantization

After training we quantize the model to fixed point precision using hls4ml

Choosing Quantization Values

e Layer weights need enough integer bits to hold largest weights

* Needs enough integer bits to hold fully accumulated values in each Dense layer
* Need to check that model still performs well and matches Keras output

* Leaving weights with higher precisions forces multiplication into DSPs,

* Leaving accumulations bit-widths large uses more LUTs and (maybe) latency

Final Values
* Inputs are 13 bits
* Weights and biases: 25 bits with 9 bit integers
e Accumulation type: 25 bits with 9 bit integers
e Activation outputs: 18 bits with 8 bit integers
* Final Output: 8 bit integer
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* Weight/Bias bit-widths can be set per layer, but were not in our case
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Keras Floating Point vs HLS Fixed Point Outputs

HLS vs Keras Output — pT

CMS Simulation Preliminary
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HLS Output
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HLS vs Keras Output — Dxy
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Model Validation
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Final Model

 Final Latency: 10 clocks (83 ns)

e Synthesis Report in HLS
o LUTs: 14k (3.2%)
 DSP: 767 (21.3%)

* Final Vivado Implementation resources with NN

e LUTs: 76.3% (from 74%)
* DSPs: 14.4% (from 2%)

* Model has been running since June 2023 and has been used for triggering from
the start of runs in 2024

* This was the first NN running in CMS L1T FPGAs for data taking
 Model performance plots in data will be available soon!



Lessons Learned — Wrappers and Batch Normalization

* About half of our inputs are 1-bit, by using a standard hlsdml model, the HLS is synthesized without
this information
* (Can solve this by wrapping hlsdml model in a wrapper with real bit-widths as inputs and running that in HLS
* This will be known by the tool during Vivado synthesis regardless, but latency is already set by this point

* Normalizing inputs can really help with training, but if your NN inputs are low precision numbers this
comes at a very high cost

* With a wrapper and without an initial BN layer, about half of our first dense layer multiplications are:
(weight * 1-bit number)
* HLS can easily handle these and start pre-accumulating these numbers while other numbers are multiplying. Leads
to lots of resource savings and lowers latency

s BN layer
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Lessons Learned — Quantization Aware Training

One problem we have run into with our models for this ML
problem is that we cannot quantize to very low precisions
without degrading performance

* Dense layer weights can go to ~10 bits

e Relu Activations are stuck at ~12 bits

This puts us in an in-between area where we do not see
LUT or latency savings from quantization directly
* DSP usage goes down, but this is not a number we are worried
about

* LUTs at this range go up because they start replacing DSPs but are
not small enough to make up for that

The largest benefit we see from this is by allowing us to
tune our accumulation bit-widths to smaller values while
still retaining performance

* Leads to large LUT savings

* **This may not pair well with quantizing relu activations and can
lead to large discrepancies between Keras and HLS

* Qkeras accumulations happen at floating point precision and the values are
rounded to the quantization value at the end, so if we don’t accumulate our
numbers with enough bits we end up rounding the wrong direction and the
output is further off than it would be without quantization at the activation
function

pT Validation Loss

Quantization Aware Training — Bit-width Effect

CMS Simulation Preliminary

o ~ ~ @
wn (=} wn o

pT Validation Loss

o
=]

5.0

4.5 4

2 3 4 5 6 7 8 9 10 11 12 13 14
Weight and Bias Bit-widths (alpha=1)

2 3 4 5 6 7 8 9 10 1 12 13 14
Weight and Bias Bit-widths (no alpha set)

4.64 -
4.63
4.62

4.61 1

pT Validation Loss

4.60 A

459 T T T
9 10 11

12 13 14 15 16 17 18
Relu Quantization Bit-witdths

11



Lessons Learned for Future Models - Quantization

* Initial model used a uniform post-training quantization

* This leaves a lot of room for improvement, to reduce latency and
resources to fit in larger models with better performance

* Weight bit-widths
» DSP usage is largely effected by weight bit widths, with our constraints this
isn’t a problem

e LUT usage at in-between bit-widths is actually worse as multiplications
shift into LUTs, but at small ranges there are savings in LUTs and DSPs

* Latency effects are often hard to predict until you get to small bit-widths.
Even in DSPs, all of our multiplications are done in parallel

e Accumulation bit-widths

e Accumulations of multiplications are all handled in LUTs, so the bit-width
that you accumulate is directly correlated with LUT usage

* Accumulations can also have a large effect on latency, this effect can be
better taken advantage of by inlining layers in HLS

* These plots were made using regular fixed point numbers (truncation and
wrapping). In my experience, adding rounding or saturation fixed point
numbers in HLS is worse than just expanding the accumulation bit-width
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Conclusions

With tight latency constraints and a nearly full chip, its still possible to squeeze in a neural network. With
his4ml converting models to HLS for use in FPGAs is simple and with some additional tweaks, you can fit
models in tight constraints.

My main tips for anyone trying to do the same using his4mil:

e Standard NN optimization strategies
* RelU activations
* Model pruning
* Remove input batch-normalization and wrap NN model in wrapper with real bit-widths

* Dense Layer Accumulations take a lot of time and LUTs
* ltreally just takes experimentation to see how changing these effects performance, resources, and timing, but there are savings to be had
* Use Quantization aware training
* There are still benefits even when you cannot quantize model to very small values an significant benefits if you can
* |f you really need to squeeze the latency - try inlining everything using HLS inline pragma
* Inlining may also help take advantage of the other changes
* Don’t be surprised if something weird happens with timing or resources (not uncommon in HLS)
* Meeting timing in HLS doesn’t mean meeting timing in a full FPGA
* Experiment with the HLS synthesis frequency and leave room for longer path delays with fuller chips
* To meet timing at 120 MHz (8.33 ns), we synthesized the HLS using a clock of 6.5 ns

Using these optimizations, we can get this model down from 83 ns to ~58 ns (7 clks). This has opened up

extra latency for us to make our model much larger and hopefully we can get a new model in this winter
with improved performance. 13
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EMTF Algorithm

] o _ EMTF Sectors
e EMTF is splitinto 6 sectors per endcap, each covering 60°,

with overlap for full coverage
e Qur algorithm runs independently for each sector

Primitive Muon stubs from different chambers are converted into
Conversion uniform EMTF Stubs, which include local sector ¢ and ©
coordinates and other info depending on chamber type

-105°
Positive i endcap

Pattern Use muon patterns to find stubs in different stations that are
Finding consistent with a muon track MEs

ME3 4

ME2 4

Track Tracks are built by attaching muon stubs that best fit the s
Building original matched pattern for each station.

Parameter First, calculate station to station track parameters (A¢, AB) *‘#V

assignment |1 For prompt muons, a pre-computed boosted decision tree y/

lookup table is used to measure p;
* For displaced muons, a NN is used to measure prand d,,




Final Track Information — Run 3 ML Inputs

e Algorithm builds up to 3 tracks per FPGA

NN inputs available

N s i
* The final track for each muon includes up to 4 . m

. . _ . . Delta Phi Values Stations:
trigger primitive hits, one per station

12, 13, 14, 23,
* Hits may be a combination of CSC and RPC hits T ; - S
* These hits have info from the original TP as well as —— - -
the converted EMTF local sector ¢ and 6
coordinates Sign of Delta Thetas 6 1
* Additionally, station to station parameters are CSC pattern 4 4 ———
calculated (Ad, AB) between hits Run 2 style

Theta 1 7
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Training Data — Displaced Muon Gun

* We create training data in the emulator by firing a single muon gun into
the endcap and using the tracks built from these displaced muons

° M uon gu N Barrel (DT+RPC) Overlap (DT+CSC+RPC)
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Trigger Rates coming from NN in Collisions

 New seed was implemented for 2024 data L1_DoubleMu0_Upt6_SQ_er2p0
ta king that ma kes use Of the EMTF NN 08— CMS ............................... ................................. ................................. ............. 1 runs:

: : : . [l 385986 (2340 b)
07 S S O SO .............................. ) — qUBdef(S.GU)

* Extends the eta coverage for to the endcaps

* Triggers on 2 high quality muons

N I R T
e \Vertex unconstrained pT > 6GeV

° Abs(eta) < 2 05 ......................... ................................ , ................. . .. B T ..............................

0.4 s U . A N ..............................

* Plot shows rate vs pile-up for this new
displaced dimuon seed for LHC run number

pre-deadtime unprescaled rate / num colliding bx [Hz]

0.2 :_ ...............................

385986 - .
01.:._ ......................... ................................ ................................. ................................. ..............................

of | | L | | |
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Virtex / — DSP48&
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Floating Point in HLS

* |tis possible to use HLS for floating point dense layers
» 16-bit, 32-bit, and 64-bit floats are supported by default

* Just for some numbers, with our first dense layer (29 inputs -> 20 outputs)

e Multiplications take ~3clks (only tested at 120MHz)

e Accumulations take ~30clks and must be programmed to run in parallel

* Floating point accumulations are dependent on the accumulation order, so to get them to run in parallel, they need
be programmed by hand to add in pairs.

* For this dense layer, 580 DSPs were used (29*20) and ~120k LUTs were used, so things really add
up fast, but almost all of the time and resources are from the accumulations not the
multiplications.
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Using DSPs for Accumulation

e Xilinx FPGA DSPs have dedicated hardware for accumulating the results of | B
multiplications i B_CBJT};“AEOEE_;_““;B—““\L__"“"_M@aﬁg%?%c? f—cug&w.—i
* Either need second multiplication to come from PCIN or C (in diagram) o ) @ ] i:[
* In both cases, the multiply output needs to be the full bit-width possible | * =
* There is no logic to cut multiplication bw before accumulator — o ;I © L::H:
* Forinputs of 25 bits and 18 bits, full bw possible is 48 bits 5 i% =) IO Pl v
* For PCIN, requires PCOUT to be directly connected to PCIN of another DSP At —
 Cutting the multiplication output before the accumulation would e e e
require logic between PCOUT and PCIN that doesn’t exist 0w

. ' _ _ e e .
* We have tested using this hardware for the accumulations by coupling | % L} E H |
multiplications and doing a first layer of accumulation in parallel (in diagram)
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. . :CAHRVWSEL D CARRYCASCIN :
From DSP48E1 User Guide (link) i !
| a8
. . . * - - 1
PCIN@ In 48 Cascaded data input from PCOUT of previous DSP48E1 slice to -l lL A e e LR o
dder *These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources. .
al . 101052109
PCOUT® Out 48 Cascaded data output to PCIN of next DSP48EL slice.

2. These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources. 2 2


https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
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