

Universidad de Oviedo

Firmware implementation of Phase-2 Overlap Muon Track Finder algorithm for CMS Level-1 trigger

Author: Piotr Andrzej Fokow, WUT **Co-Author:** Pelayo Leguina Lopez, University of Oviedo

TWEPP 2024, Glasgow

CMS Overlap Muon Track Finder (OMTF)

- OMTF is one of the subsystems of the CMS L1 Trigger, it was introduced for the Phase-1 CMS upgrade in 2016.
- It covers the pseudorapidity region of 0.83 < |η| < 1.24
- Each processing board will cover 120 degrees of detector in r-φ plane with 30 degrees of overlap (6 boards in total)
- It utilizes three types of detectors: Drift Tubes (DTs) and Resistive Plate Chambers (RPCs) from Barrel and Cathode Strip Chambers (CSCs) and RPCs from Endcap region.
- OMTF identifies the muon tracks, estimates their transverse momentum and sends the found candidates (with associated chamber segments) to the Global Muon Trigger

CMS detector slice for Phase-2 CMS, Source: "The Phase-2 Upgrade of the CMS Level-1 Trigger"

Muon track reconstruction in OMTF region

- The principle of the muon track reconstruction in the Phase-2 OMTF algorithm is the same as in Phase-1
- The muon track recognition algorithm was written in VHDL for Phase-1 and has been ported to C++ HLS for Phase-2
- Inputs: 18 layers of muon detection (DT, RPC and CSC)
- 8 of detector layers with good coverage in φ and η are treated as the reference layers
- The OMTF algorithm begins the muon reconstruction from a reference hit
- The reconstruction is performed using pattern matching, based on the naive Bayes classifier
- Duplicated track candidates are removed by the Ghostbuster functional block
- For Phase-2, pattern recognition algorithm introduces measurement of transverse momentum without beamspot constraint. This allows the triggering on muons coming from the decays of long-lived particles.

Source: Bluj, Michał et al. "From the Physical Model to the Electronic System - OMTF Trigger for CMS."

OMTF Algorithm: Implementation for Phase-2

- The Bunch-Crossing (BX) event rate is 40 MHz, which determines the basic operating frequency of the system
- 15 input BMT-L1 links, 65 CSC links and 12 RPCe links, where BMT-L1 links are now implemented
- Barrel Muon Trigger Layer-1 data rate: up to 8 Trigger Primitives (TPs): 4 φ TPs, 4 θ TPs per BX, per link
- The input data must be converted to achieve common representation of data coming from different types of detectors.
- OMTF Processor and Neural Network (NN) clock frequency is 360 MHz
- Data output rate for Global Muon Trigger (GMT): up to 9 muon candidates per BX, which is determined by the algorithm's clock
- 18 output links to GMT
- Converters, OMTF Processor, Neural Network and Ghostbuster are implemented as IP cores using HLS

Target OMTF Algorithm diagram; Created by Pelayo Leguina, Universidad de Oviedo

NN in OMTF Algorithm for Phase-2 CMS

- Fully-Connected Neural Network is used in Phase-2 OMTF as one of functional blocks
- Estimates the $\boldsymbol{p}_{\scriptscriptstyle T}$ and charge for the muon candidate
- The NN inputs are $\Delta \phi$ versus the reference hit found by pattern logic
- 2 hidden layers: 16 neurons in hidden layer 1 and 9 neurons in hidden layer 2
- 441 multiplications in total
- Multiplication operations utilizes DSP48 blocks built in Ultrascale+ FPGAs
- Weights and activation functions implemented as look-up tables stored in BRAMs, to reduce logic cell utilization

OMTF P2 Algorithm: Implementation for Phase-2

PROCESSOR

OMTF F

RPC

- Target platform: custom ATCA boards (X2O) with AMD Ultrascale+ FPGAs (xcvu13p-fsga2577-1-e)
- Using Blobfish custom firmware interface for link • interface generation and system management
- TCL and Cmake scripts are used in algorithm integration
- The blocks marked with solid lines are fully implemented, while those marked with dashed line are partially implemented or simulated.
- Block colors: Blobfish in purple, input data converters in green OMTF Processor in yellow, NN in red

CONVERTER

RPC CONVERTER

CONVERTER

BMT

NE

AL

R

ш

ESI

SCALE)

(OMTF

STUBS (

INPUT

@25Gbps

@25Gbps

@4.8Gbps

CSC

RPCe

ing Phase-2 superprimitives 64b

BMT

Results from Septemb	2024
Parameter	OMTF @360 MHz
LUT	6.3%
FF	5.3%
BRAM	20.5%
DSP	4.3%
Latency	118 clock cycles (~328 ns)
Worst Negative Slack	0.030 ns
Thermal Margin	~71 °C

ER

<u>SHOSTBUST</u>

INPUT STUBS

PACKER

ERIAL

OMTF

To GMT

Piotr Fokow, WUT: "Firmware implementation of Phase-2 Overlap Muon Track Finder algorithm for CMS Level-1 trigger", TWEPP 2024

NN

INPUT

Z

OMTF P2 Algorithm: Implementation challenges

Single SLR vs. dual SLR design

The link configuration overuses available GTY transceivers in a single SLR. Every SLR crossing comes with increased latency and resource utilization. We are expecting multiple SLR crossings for input link data. We conducted a test to get an answer to determine which negative effects might be associated with the SLR crossing. We observed higher latency and clock utilization.

Results from one of earlier builds. Red – OMTF processor, yellow – NN

Single SLR @240 MHz	Dual SLR @240 MHz
345983 [20.02%]	336173 [19.45%]
143556 [4.15%]	145413 [4.21%]
52589 [24.35%]	60567 [28.04%]
252 [9.38%]	252 [9.38%]
441 [3.59%]	441 [3.59%]
0	2
4.139 [0.027 ns]	4.112 [0.117 ns]
	Single SLR @240 MHz 345983 [20.02%] 143556 [4.15%] 52589 [24.35%] 252 [9.38%] 441 [3.59%] 0 441 [3.59%] 0 4.139 [0.027 ns]

Single-clock read-write dependencies

Priority Encoder is one of functions inside OMTFProcessor, which provides a position to the first unique reference hit every clock cycle. Those dependencies for algorithms working at higher frequences are constraining timing performance.

The HLS synthesis result before and after refactorization

Modules & Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles) Latency(n	s) Iteration Later	ncy Inte	rval Trip Co	ount Pipe	elined	BRAM	DSP	FF	LUT
opriorityEncoder	Timing Violation					o o	.0				yes		(257	1505
Modules & Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	1 DSP	FF	LUT	
priorityEncoder_v:	3 👍 Timing Violation					0.0				ye	s	o 0	513	34917	

Design and verification workflow

Design and verification flow for OMTF algorithm; Created by Pelayo Leguina, Universidad de Oviedo

OMTF Processor and Neural Network simulation results, compared with CMSSW outputs prove, that algorithm handles feeding data properly

OMTF Processor C simultaion

December Output has 1004 and hit and 60 and and a
Processor Output - bx: 1994, ret_nit_nr: 60, retlayer: 2
Best Restricted Stubs:
Layer: Ø - Active: 1, Phi: 935, Eta: 92, Quality: 6, DistPhi Phi: 28
Layer: 1 - Active: 1, Phi: -215, Eta: 92, Quality: 6, DistPhi Phi: -215
Layer: 2 - Active: 1, Phi: 907, Eta: 79, Quality: 6, DistPhi Phi: 0
Layer: 3 - Active: 1, Phi: -182, Eta: 79, Quality: 6, DistPhi Phi: -182
Laver: 4 - Active: 1. Phi: 883. Eta: 69. Quality: 6. DistPhi Phi: -24
Laver: 5 - Active: 1. Phi: -236 Eta: 69 Quality: 6 DistPhi Phi: -236
Layer: 10 - Active: 1 Dbi: 944 Eta: 86 Quality: 2 Distributiva 27
Layer, 10 - Active, 1, Fill, 944, Eta, 60, Quality, 2, District Fill, 57
Layer, 11 - Active, 1, Fill, 920, Eta. 01, Quality, 1, District Fill, 19
Layer: 15 - Active: 1, Phi: 905, Eta: 76, Quality: 2, Distrii Phi: -4
GP Out constrained - Valid_out: 1, best_pat_64: 9, pdrSum: 680, fired_cnt: /
GP Out Unconstrained - valid_out: 1, best_pat_64: 63, pdfSumUnconstr: 791, fired_cnt
<body> these reflayer="2" bestPat="5"></body>
<pre>setStub layer="0" input="4" eta="92" phi="935" quality="6" phiDist="28" valid="1"/></pre>
<pre><beststub eta="92" input="4" layer="1" phi="-215" phidist="-215" quality="6" valid="0"></beststub></pre>
 stStub layer="2" input="6" eta="79" phi="907" quality="6" phiDist="0" valid="1"/>
<pre><beststub eta="79" input="6" layer="3" phi="-182" phidist="-182" quality="6" valid="1"></beststub></pre>
<pre>setStub layer="4" input="4" eta="69" phi="883" quality="6" phiDist="-24" valid="1"/></pre>
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
 bestStub layer="10" input="8" eta="86" phi="944" quality="2" phiDist="37" valid="1"/>
 bestStub layer="11" input="8" eta="81" phi="926" quality="1" phiDist="19" valid="1"/>
<pre><beststub eta="78" input="12" layer="13" phi="903" phidist="-4" quality="2" valid="1"></beststub></pre>
<pre><gpresultconstr patnum="9" pdfsum="680"></gpresultconstr></pre>
<gpresuitunconstr pathum="63" pdfsum="791"></gpresuitunconstr>

Neural Network C simultaion

calculated	sign: -0.9375» expected sign: -0.9	9375» resu	ilt: passed
calculated	pT: 88.3594» expected pT: 88.3594»	result:	passed
calculated	sign: -0.75» expected sign: -0.75»	result:	passed
calculated	pT: 87.9688» expected pT: 87.9688»	result:	passed
calculated	sign: -1»expected sign: -1» result	: passed	
calculated	pT: 4.625 » expected pT: 4.625 » res	sult: pass	ed
calculated	sign: -1»expected sign: -1» result	: passed	
calculated	pT: 75.8438» expected pT: 75.8438»	result:	passed
calculated	sign: -1»expected sign: -1» result	: passed	
calculated	pT: 60.1172» expected pT: 60.1172»	result:	passed
calculated	<pre>sign: -1>expected sign: -1> result</pre>	: passed	
calculated	pT: 65.1563» expected pT: 65.1563»	result:	passed
calculated	<pre>sign: -1>expected sign: -1> result</pre>	: passed	
calculated	pT: 53.7188» expected pT: 53.7188»	result:	passed
calculated	sign: -1»expected sign: -1» result	: passed	
calculated	pT: 36.7891» expected pT: 36.7891»	result:	passed
calculated	<pre>sign: -1»expected sign: -1» result</pre>	: passed	
calculated	pT: 52.0938» expected pT: 52.0938»	result:	passed
calculated	sign: -0.4375» expected sign: -0.4	4375» resu	ılt: passed
calculated	pT: 44.5313» expected pT: 44.5313»	result:	passed
calculated	<pre>sign: -1»expected sign: -1» result</pre>	: passed	
calculated	pT: 8.47656» expected pT: 8.47656»	result:	passed
calculated	sign: -1»expected sign: -1» result	: passed	
calculated	pT: 12.5»expected pT: 12.5» result	: passed	
calculated	<pre>sign: -1»expected sign: -1» result</pre>	: passed	
calculated	pT: 10.4297» expected pT: 10.4297»	result:	passed
calculated	<pre>sign: -1»expected sign: -1» result</pre>	: passed	
calculated	pT: 10.9453» expected pT: 10.9453»	result:	passed
calculated	sign: -1»expected sign: -1» result	: passed	
calculated	pT: 9.47656» expected pT: 9.47656»	result:	passed
calculated	<pre>sign: -1»expected sign: -1» result</pre>	: passed	
calculated	pT: 9.32813 expected pT: 9.32813 area	result:	passed
INFO: [COSI			

Simulation of integrated algorithm results in proper data propagation

																	347.25	<mark>0 ns</mark>		
Name	Value	0.00	0 ns	1 ⁵⁰ .	000 ns	100.0	000 ns	150.0	000 ns	200.0	000 ns	25	0.000 n	IS I	300.000	ð ns	1 ^{350.0}	00 ns	400	.000 ns
logic_clk	1		NULLUI																	
🛯 slr1_usr_rst_in	0																			
> 😽 slr0_gt_0ta[255:0]	86ffd640fffa0f4086ffd640fffa0f4086ffd640fffa0f4086ffd64	\odot) CX	D 🖸 C	X		X					\odot \odot	\odot \odot	ΘK			
> 😽 slr0_gt_0_rtfirst[3:0	0	0	0		0 0	0	0	0	0	0	0		0	0	0	0	0	0		0 0
> 😽 slr0_gt_0_rx_tlast[3:0	f	0	0		0	0	0	0	0) (0	0		0	0	0	0	0	0	0	0
> 😼 slr0_gt_0valid[3:0]	f															0 _f				
> 😽 slr0_gt_1ta[255:0]	86ffd640fffa0f4086ffd640fffa0f4086ffd640fffa0f4086ffd64																ΘK			
> 😽 slr0_gt_2ta[255:0]	86ffd640fffa0f4086ffd640fffa0f4086ffd640fffa0f4086ffd64			XO		DX CK		XOK		ЖСК		X					а ЮК	XOC	XO	
> 😼 slr0_gt_3ta[191:0]	86ffd640fffa0f4086ffd640fffa0f4086ffd640fffa0f40	\odot	·X · · X · ·	χ÷	(·X · · X · ·	XIX	·X · · X · ·	XIX	X	:X:::	XIXII	X÷X		$\overline{\cdot \cdot} \times \overline{\cdot}$	(iii) (iii)	X	$\langle \rangle$	i Xii Xi
> 😼 slr0_gt_4ta[191:0]	000000000fd0416000030064001e95f000030000000a8c	••••	0000000	0000	000000000	00000000	0000000	💥 00	00000	X	00	0000.		1000	0000000	0f0	XXX	XXXX	XXX	XXXXX
> 😼 slr0_gt_4_ttfirst[2:0	7	(\mathbf{X})			Ø				7	X			5				7/5	$\sqrt{7}$	ŻX	5 7 5
> 😼 BMT_PHI_data[0:14]	(10,15f,0bc19,1fff,a,d,3,0,4,0,0),(10,dff,15903,1ffd,0,7,2,2,0	C)	0) (C) (C.)	.) (C.		.) (C.) (C.		()	()	(() (C.	.) (0)
> 😼 BMT_TH_data[0:14]	(10,31f,15903,1ffd0,7,a,0,0,0),(10,31f,15903,1ffd0,7,a,0,0,0	\odot	()	()	(()	()	()	()	(C	() (C			()	()	()
✓ ♥ OMTF_dtSt:5][0:3]	((1,06fd,051,1ac8,d,08),(1,06fd,051,1ac8,d,09),(1,06fd,051		((1,062.	÷χα	(1,06fd,0	051,1ac8	3,d,08),((1,06fd	,051,1ac	8,d,09),(1,06	fd,05:	L,1ac8,	d,0a)	,(1,06f	d,051,:	ac8,d	0b)),((l,1ac	8,051,000
> 😽 [0][0:3]	(1,06fd,051,1ac8,d,08),(1,06fd,051,1ac8,d,09),(1,06fd,051,		(1,0627.	ΞX						(1,0	06fd,051	.,1ac8	,d,08),	,(1,06	fd,051	,1ac8,c	,09),(1,06fd,0	151,1a	ac8,d,0a),
> 😻 [1][0:3]	(1,1ac8,051,0000,d,08),(1,1ac8,051,0000,d,09),(1,1ac8,051		(1,0000.	ΞX						(1,1	.ac8,051	.,0000	,d,08),	,(1,1a	c8,051	,0000,c	,09),(1,1ac8,0	151,00	000,d,0a),
> 😻 [2][0:3]	(1,06fd,051,1ac8,d,08),(1,06fd,051,1ac8,d,09),(1,06fd,051,		(1,0627.	÷χ						(1,0	06fd,051	.,1ac8	,d,08),	,(1,06	fd,051	,1ac8,c	,09),(1,06fd,0	151,1a	ac8,d,0a),
> 😻 [3][0:3]	(1,1ac8,051,0000,d,08),(1,1ac8,051,0000,d,09),(1,1ac8,051		(1,0000.	÷χ						(1,1	.ac8,051	.,0000	,d,08),	,(1,1a	c8,051	,0000,c	,09),(1,1ac8,0	151,00	000,d,0a),
> 😻 [4][0:3]	(1,06fd,051,1ac8,d,08),(1,06fd,051,1ac8,d,09),(1,06fd,051,		(1,0627.	÷χ						(1,0	06fd,051	.,1ac8	,d,08),	,(1,06	fd,051	,1ac8,d	,09),(1,06fd,0	151,1a	ac8,d,0a),
> 😽 [5][0:3]	(1,1ac8,051,0000,d,08),(1,1ac8,051,0000,d,09),(1,1ac8,051		(1,0000.	<u>.</u> .Х						(1,1	.ac8,051	.,0000	,d,08),	,(1,1a	c8,051	,0000,c	,09),(1,1ac8,0	151,00	000,d,0a),
> 😻 restricted0:17][0:3]	((0,0000,0,0000,000),(0,0000,0,0000,000	CX (((0,00	00,0,I	•XXX	XXXX	XXXXX	ÓXX	$\times \times \times$	ĊXX	XXXX	XX	$\infty \infty$	XXX	XXXX	XXXX	İXXX		ŚW	XXXXXX
Useriod Inc_clk_period	25000 ps														2	5000 p				
Upic_clk_period	2778 ps															2778 ps				

Conclusions

- As for now, the OMTF Processor is ported from Phase-1 and prepared for Phase-2. Neural Network and BMT-L1 input processing blocks are implemented.
- OMTF Processor has been extended to include muon displacement calculation for long-lived particle triggering.
- Neural Network is introduced to improve muon's p_T and charge calculation. Might require further optimization to reduce resource usage, as new calculations eg. beam-spot-unconstrained p_T will be implemented.
- Current design fits into one SLR. We expect to use multiple SLRs due to high input link and BRAM utilization, as well as functional blocks yet to be implemented.
- HLS verification of IP blocks is successful. Verification of integrated algorithm with small input data sampes shows, that data are propagated properly.
- The optimal algorithm's logic placement will be determined in further steps.

The Ministry of Science and Higher **Education funds the Poland's** participation in Compact Muon **Solenoid Experiment**

The OMTF algorithm is developed by a group of research centers:

Ministry of Science and Higher Education **Republic of Poland**

Universidad de Oviedo Universidá d'Uviéu

OF WARSAW

The work is financed within a project 2021/43/B/ST2/01552 by the National Science Center

Bibliography

[1] - CMS collaboration, The Phase-2 Upgrade of the CMS Level-1 Trigger, Tech. Rep. CMS-TDR-021, CERN, Geneva (2020)

[2] - Bluj, Michał et al. "From the Physical Model to the Electronic System - OMTF Trigger for CMS." Acta Physica Polonica. B, Proceedings Supplement 9.2 (2016): 181–188.

[3] - Bunkowski, K. "The Algorithm of the CMS Level-1 Overlap Muon Track Finder Trigger." *Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment* 936 (2019): 368–369.

[4] - Głażewska, Marianna, and Marcin Konecki. "Level-1 Muon Triggers for the CMS Experiment at the HL-LHC." *Proceedings of Science* 414 (2022): Proceedings of Science, 2022, Vol.414, Article 1219.

[5] - Zabolotny, W. M., and A. Byszuk. "Algorithm and Implementation of Muon Trigger and Data Transmission System for Barrel-Endcap Overlap Region of the CMS Detector." *Journal of instrumentation* 11.3 (2016): C03004.

[6] - Petersen, Philipp, and Felix Voigtlaender. "Equivalence of Approximation by Convolutional Neural Networks and Fully-Connected Networks." *arXiv.org* (2021): arXiv.org, 2021-01.

Thank you for your attention