System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC

Sioni Summers for the CMS Collaboration

TWEPP, Glasgow October 1 2024

Introduction

- High-Luminosity LHC will increase the number of simultaneous p-p collisions (pileup) up to 200
- CMS will **upgrade detectors** for the HL-LHC era: new tracker with tracking at L1T for first time, new endcap High Granularity Calorimeter (HGCAL), upgrades to muon detectors
- Phase 2 Upgrade of CMS L1T will select 750 kHz events from 40 MHz for further reconstruction and selection at High Level Trigger
 - Maintain Run-3-like trigger thresholds for standard single/double-object triggers (jets, electrons, muons, taus, missing transverse momentum)
 - Add new algorithms and techniques to extend CMS physics acceptance compared to Phase 1
 - Adapt and evolve as needs of experiment change

78 pileup vertices

140 pileup vertices

- Phase 2 Upgrade of CMS L1T will select **750 kHz events from 40 MHz** for further reconstruction and selection at High Level Trigger - up from 100 kHz
 - Trigger decision for one event must arrive within **12.5 µs latency**
- System will comprise hundreds of custom electronics boards with powerful FPGA processors (shown below)
 - ATCA platform
 - High-speed optical data transmission between boards, up to 4 Tb/s per board

CMS Level 1 Trigger - System

BMT

- How do we decide which events to keep? reconstructing high level information from low level detector information
 - Low level: raw detector hits (digitised measurements from sensors)
 - High level: particles, event-level quantities like total energy, jets (sprays of particles)
- Final decision compares the high level quantities with a "menu" of conditions to accept

Trigger Processing

Phase 2: New Detectors

- Track Reconstruction at Level 1 Trigger for first time up to $|\eta| < 2.4$
- "Stubs" with $p_T > 2$ GeV will be sent to L1T from outer tracker
- Tracks in the Level 1 Trigger essential for 200 PU conditions
 - Primary vertex reconstruction, particle reconstruction
- L1T Track finding in around 200 FPGAs
- Seed finding, road building, track fitting

- High granularity calorimeter: silicon sampling calorimeter for the endcaps ($1.5 < |\eta| < 3$)
- 6.5 million channels (1 million to trigger) in 47 layers
 - Very fine transverse and longitudinal segmentation
- Around 200 FPGAs for 3D cluster reconstruction in L1T

Particle Flow, Vertexing, and PUPPI

- Particle Flow and PUPPI are principle CMS offline reconstruction algorithms, now to be at L1T
- Each sub-detector first performs **local reconstruction**
- **Particle Flow** links elements from different subdetectors to reconstruct final state *particles*
 - Link tracks to calo. clusters for charged/neutral hadrons and electrons/photons; link tracks to muons
- Vertex Finding reconsts primary vertex from tracks
- **PileUp Per Particle Identification** (PUPPI) isolates the particles from the primary interaction
 - Using vertex association for charged particles
 - Nearby energy weighting for neutral particles
- Implementation splits detector into small regional chunks for parallelism, takes about 1 µs latency
- Algorithms primarily implemented with **HLS**, data movers written in **HDL**
- Different modules run at 360, 240, & 180 MHz

October 1 2024

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

PUPPI

- Electrons will be reconstructed in Correlator Layer 1 by linking a track with a calorimeter cluster
- Neither reconstruction is perfect, and electrons emit bremsstrahlung
- **Baseline kinematic approach** used (η, ϕ) distance and p⊤ compatibility to make a link
- New BDT approach first makes a loose kinematic selection, then uses ML to predict probability that the track & cluster both originated from an electron
 - Using variables from both track and cluster
- **Improved** electron reconstruction **efficiency** with new method (bottom left)
- Keeps electron trigger thresholds as low as Run 3 while maintaining sustainable rate
- Tiny xgboost model, **conifer** for BDT inference in FPGAs
 - 10 instances of BDT to keep up with track/cluster rate

Electron ID

ΔR (GEN, HGCAL Cluster) < 0.2 ΔR (Track, HGCAL Cluster)

CMS-DP-2023-047

7

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

Jet Reconstruction

- push what can be done at L1T further

- - finder
- $(HH \rightarrow bbbb shown)$
- than 1 µs, **hls4ml** for NN inference in FPGAs

October 1 2024

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

Jet Tagging

Final State Selection with ML

- comparing event objects against "menu" of conditions
 - photons, muons, taus
- reconstruction, and also to make trigger decisions
- objects
- classify topologies

Final State Selection with ML

- comparing event objects against "menu" of conditions
 - photons, muons, taus

Jets on Serenity and APx

- Correlator Layer 2 will use both Serenity and APx, split by algorithm
- Jet algorithm has been demonstrated on both platforms
- Common 'adapter' interface HDL written from board framework to algorithm internals
- Internal 'token' handshaking between HLS modules allowed easy tweaking of pipeline latency to ease timing on both -1 and -2 speed grade parts
- Testing by writing data from simulated Phase 2 CMS events into board link input buffers \rightarrow run through algorithm \rightarrow capture output link buffers
- Observing 99.9% bit-exact matching between CMS Software emulation and Serenity/APx on 1000 events tt + 200 PU
 - Remaining mismatches understood to be from p_T ordering
- Successfully demonstrates the interoperability of Serenity and APx, and the flexibility of Correlator Layer 2 designs

12

Board-to-board testing

- Board-to-board communication between flavours initially established with link and CMS Protocol (<u>CSP</u>) testing
- flavour already established
- have recently taken place **Serenity**, **APd1**

 - Endcap

Same test events & observed matching as prev. slide

Summary

- CMS will be **extensively upgraded** for up to 200 PU conditions of High Luminosity LHC
- CMS has developed a solid solution to triggering for HL-LHC
- L1 Trigger system will be upgraded to maintain and extend physics reach compared to Runs 2 & 3
- New processing boards with powerful FPGA processors and high speed optics.
- New algorithms exploiting **sophisticated reconstruction**:
 - Track Finding, Clustering, Particle Flow, Jet Reconstruction
- Algorithms are being successfully demonstrated in board-to-board tests across different board types
- Extensive use of **Machine Learning** for improved reconstruction and also final state selection
 - 25 billion ML predictions per second accounted for from current projects (expect this to increase!)
- Related talks at this workshop:
 - Firmware implementation of Phase-2 Overlap Muon Track Finder algorithm for CMS Level-1 trigger, Piotr Fokow
 - Testing of the Prototype CMS Global Level-1 Trigger for Phase-2, Hannes Sakulin
 - Ghodgaonkar
 - The APx Board for the CMS Phase 2 L1 Calorimeter trigger: Testing and Performance, Isobel Ojalvo
 - Design, Construction, and Testing of the APOLLO ATCA Blades for Use at the HL-LHC, Jonathan Fulcher
 - Phase-2 CMS DAQ -- Growing from prototype boards to demonstrator systems, Jeroen Hegeman

- Pileup Mitigation in Hadron Forward Calorimeter at the Level-1 Trigger of the CMS experiment for the HL-LHC, Abhijeet

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

14

Backup

Deregionizer

- Truncation of 128 particles in deregionizer motivated by multiplicity observed in high pileup simulations
- Typical event with no hard interaction and only pileup well below truncation limit
- High multiplicity topology tt with 200 pileup interactions has truncation of one particle for one event per thousand
- "Extreme scenario" tttt with 300 pileup has some more significant truncation, but many jets will be found regardless

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

- Left: online threshold vs rate in PU 200 events (no primary interaction)
- Centre: turn-on curve with thresholds chosen for a rate of 70 kHz in tt with 200 pileup
- Right: turn-on curve with thresholds chosen for a rate of 70 kHz in QCD with 200 pileup
- SC4 performance nearly identical to AK4

Jet performance 1 - Efficiency and Rate

Jet performance 2

- Simulated events with tt + 200 pileup (top), QCD + 200 pileup (bottom) run through CMS detector simulation and L1T algorithm emulation
- Run Seeded Cone anti-kt jet reconstruction on the same L1T PUPPI particles, for R=0.4 and R=0.8
- Left column: efficiency to match each anti-kt jet to a Seeded Cone jet within $\Delta R \leq 0.2$ and p_T within 20%
- Right column: trigger efficiency as a function of simulated jet p_T for different L1T thresholds
- Seeded Cone generally matches well to anti-k_t, with some mismatches where the SC jet seeding can miss some particles / sub-jet that anti-k_t captures
- Trigger turn-ons are virtually identical for SC4 and AK4

October 1 2024

Jet performance 3 - SC to AK matching

Left: distribution of Seeded Cone p_T for jets matched within $\Delta R \leq 0.2$ of an anti-k_t jet with R=0.4 in simulated events of \overline{t} with 200 pileup.

Right: distribution of Seeded Cone p_T for jets matched within $\Delta R \leq 0.2$ of an anti-k_t jet with R=0.8 in simulated events of \overline{t} with 200 pileup.

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

- a W or Z boson
- $(\eta, \phi) \simeq (-1, -2)$
- The W is reconstructed as two R=0.4 jets or one R=0.8 jet by both Seeded Cone and anti-k_t reconstruction.

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

η

- "Event display" from sample of $t\bar{t}$ with 200 pileup
- Shows a case where one AK8 jet is reconstructed as two SC8 jets due to the limitations of casting the cone around the single highest p_T particle seed with no reclustering

Event Displays 2

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC - Sioni Summers

Event Displays

• Event displays from tt with 200 PU where one Gen AK4 jet is resolved as two SC4/AK4 jets or one SC8/AK8 jet

October 1 2024

