Ensuring Clock Phase Repeatability by Preventing Loss of the 40.078 MHz Clock in Time-Critical Detectors: A Non-disruptive Clock Switching Approach

- The APx consortium for the CMS collaboration -

N.Loukas¹, L.Moreno², T.Anderson³, G.Cucciati¹, S.Goadhouse³, T.Gorski⁴, A.Svetek⁴

[2] Princeton University [1] University of Notre Dame [4] University of Wisconsin-Madison [3] University of Virginia

Skew Distributio

(PVT circuit)

As measured, an up to 15 ps clock phase jump leads to a multiple of 15 ps accuracy error which needs to be calibrated. In principle, this can be done through Physics analysis. However, in case of for example the CMS-ECAL Upgrade for HL-LHC, this process must be applied to ~62k channels every time the system is in configure. This procedure would inevitably introduce a dead-time.

Resetting Slave FPGA every new measurement Heating up the FPGA every 10th measurement

nikitas.loukas@cern.ch, lperezmo@cern.ch

[Master - BCP RXUSRCLK] Stats

u = -2.745 ps

 $\sigma = 1.411 \text{ ps}$

o = 1.538 ps Pk-Pk ≈ 9.485 ps

Pk-Pk ≈ 8.289 ps

[Master - lpGBT] State ι = -10.789 ps

We are proposing a non-disruptive clock switch technique that prevents the loss of the 40.078 MHz clock. That ensures the accuracy of the clock distribution remains unchanged between data takings \rightarrow Less often calibration \rightarrow Less time lost during data taking.

Glasgow, UK

TWEPP 2024