Prototype of SiC beam monitor for the COMET **experiment at J-PARC KEK Electronics-system group Tetsuichi Kishishita**

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

kisisita@post.kek.jp

Y. Fujita, Y. Fukao, E. Hamada, K. Okabe, M. Shoji, X. Xu, R. Kosugi, K. Kojima, K. Masumoto, and Y. Tanaka

Outline

• Research Complex)

- Basic properties of the PN-devices -
- Overview of the COMET experiment -
- Concept of muon beam monitor based on SiC -
- Test beam results -
- Future prospect -

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

Introduction

- SiC and diamond are more radiation-hard than standard n-type Si, 10¹⁴ n_{eq}/cm² for SiC and 10¹⁵ n_{eq}/cm² for diamond.
- Uniform device characteristics and productivity are still challenging.

Property	Diamond	GaN	4H-SiC	Si	Ge	CdTe	CdZnTe
Eg [eV]	5.5	3.39	3.26	1.12	0.67	1.44	1.60
Ebreakdown[V/ cm]	107	4x10 ⁶	2.2x10 ⁶	3x10⁵	10 ⁵	TBD	TBD
μ _e [cm²/Vs]	1800	100	800	1450	<3900 *[2]	1090 *[1]	906 *[3]
μ _h [cm²/Vs]	1200	30	115	450	<1900	110	-
v _{sat} [cm/s]	2.2x10 ⁷	-	2x10 ⁷	0.8x10 ⁷	0.74x10 ^{7*[5]}	107	107
Z	6	31/7	14/6	14	32	48/52	48/52/30
E r (dielectric const.)	5.7	9.6	9.7	11.7	TBD	TBD	TBD
e-h energy [eV]	13	8.9	7.6-8.4	3.6	2.9	4.5	5.0
Density	3.515	6.15	3.22	2:33	5.3	5.9	5.8
Displacem. [eV]	43	20	25	13-20	15-18	5.3-6.2 *[4]	-
				high radiation	n-tolerance	small signal	charges

For stable device production, KEK-Esys collaborates with AIST power device group since 2019.

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

e Si, 10¹⁴ n_{eq}/cm² for SiC and 10¹⁵ n_{eq}/cm² for diamond. ging.

SiC device fabrication

- PN diodes in wafer process, 5 mm x 5 mm simple diode
- Reverse bias tolerance of 3 kV
- 50 um epi grown on (0001) 4H-SiC n-type substrate @AIST
- Nd-Na: 4.7 x 10¹⁴ cm⁻³
- Thickness: 350 um
- 260 dies with 5 x 5 mm² from 4-inch wafer, 4 x 4 mm² active area

kisisita@post.kek.jp

Schottky diode

- Easy process

1E-10 6.13E-10 5.39E-10 5.76E-10

PN diode

- Difficult process (High temperature annealing)

- Sensitive to surface conditions

- Less sensitive to surface conditions

Silicone rubber for preventing electric discharges

commercial CSA (AC-coupling)+shaper

Device characteristics

- Leakage current <10 nA, uniform within one order of magnitude
- Stable Landau peak position (no polarization/charge-up)
- Full depletion voltage 1000 V for 50 um epi (TCAD)

Landau peak is separated from pedestal in worst leakage device. Full-depletion voltage is consistent with TCAD simulation.

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

How can we play with these devices?

Demand for SiC sensor: COMET at J-PARC

- COMET (COherent Muon to Electron Transition) starts from 2027 (one of the KEK core projects)
- They require rad-hard beam monitors for high-intensity 8 GeV protons / secondary particles

kisisita@post.kek.jp

What do we do in COMET: Muon to Electron Transition

Search for neutrino-less muon to electron conversion. μ^- + (A, Z) \rightarrow e⁻ + (A, Z)

Contribution from Standard Model by neutrino oscillation is $\sim O(10^{-54})$. Good probe for new physics search.

- COMET aims to achieve x100 higher sensitivity from the past. - It's good opportunity to install "own" detectors to contribute to new physics!

COMET Phase-1 and muon beam monitor (µBM)

- Pions decay to muons during transportation in Solenoid magnet.

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

kisisita@post.kek.jp

Concept of SiC-based µBM

kisisita@post.kek.jp

- attached by L-angle connector

Beam test results

- MLF (Materials and Life science experimental Facility), D2 beam line
- Pulsed muon beams (25 Hz, ~20 muons/bunch), 20~100 MeV/c.
- Very close to the actual experiment

kisisita@post.kek.jp

Signals from SiC sensors

- Triggered by beam-injection timing

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

ns

Pulse height distribution@ low intensity µ-beams

kisisita@post.kek.jp

Radiation-tolerance also required to front-end ASIC.

kisisita@post.kek.jp

	r	٦	١
	1		Ś
	L	J	

Signal integrity test (ADC+CML)

Cable length estimated as 10-15 m from μ BM to backend electronics.

kisisita@post.kek.jp

Analog blocks (CSA+CRRC)

- Analog blocks working, but we need faster shaping times. -

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

- We changed the architecture from CSA to TIA in the 2nd prototype chip.

U	

TIA+CRRC architecture

- 2nd prototype ASIC is under testing.

- Fast shaping time of <100 ns required since muons arrive at 100~300 ns in the hit timing distribution.

Bunch timing with every 1.17/1.75 us

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

Variable peaking times

Variable voltage gains

We submit the final ASIC in this December.

Further Demand for SiC sensors (more challenging)

- 8 GeV proton beam is bunched in every 1.2us.
- Pion is BGD. Select muon events by timing difference.

kisisita@post.kek.j

ep. - 4 Oct. 2024, Glasgow

- 1	

Requirements for Extinction Monitor

- -

- Segmented electrodes (pixels or strips) to reduce event rates
- Dedicated electronics with timing-gate structure

To prove the concept, we investigated the sensor segmentation and performance uniformity.

extraction

see the Poster, "The GAROP-2, a Radiation-Hard ASIC for Particle Beam Monitor Readout of the COMET Experiment", by X. Xu

Oct. 2024, Glasgow

断面

Sensor segmentation (hybrid pixel detector)

- 5 mm x 5 mm with 12 x 12 electrodes, 270 um pitch
- readout with low-noise ASIC
- Au/In stud bump technology

Ti(100nm)/Al(2500nm)

kisisita@post.kek.jp

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

Passivation (Parylen or Silicone rubber) is necessary to prevent electric discharges @1 kV.

Ч.

Spectral performance

- HV: +600 V
- Exposure: 3 days
- Mode: HG

- HV: +600 V
- Exposure: 0.5 days
- Mode: HG

IEEE TNS, vol.70, p.1210, 2023.

Imaging performance

- Blind search of pinhole position in Pb sheet -
- Count Sr-90 events between 1000-6000 e-, 1 min for each pixel -

- SiC performance is closing to silicon.

kisisita@post.kek.jp

Finer segmentation is realistic and nice uniformity expectable in larger devices

Still long way to realize the proton extinction monitor, but SiC is an important candidate.

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

Future prospect

For the extinction monitor, SiC-strip sensor (1 cm x 1 cm, 52 strips with 200 um pitch) will be available soon!

Thank you very much for your attention.

TWEPP2024, 30 Sep. - 4 Oct. 2024, Glasgow

kisisita@post.kek.jp

