

Redefining electronic boundaries with 3D integration and advanced packaging

Perceval Coudrain CEA-Leti, Univ. Grenoble Alpes, France

Outline

-
- eral values of the **outline**
• Going vertical ?
• 3D integration toolbox
- outline
• Soing vertical?
• 3D integration toolbox
• Fields benefiting from 3D • Fields benefiting from 3D architectures

• A few words about fan-out wafer level packaging

Going vertical ?

lectronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

Not really a new idea !

Three-Dimensional IC Trends

YOICHI AKASAKA

Invited Paper

VLSI will be reaching to the limit of minimization in the 1990s, and after that, further increase of packing density or functions might depend on the vertical integration technology.

Three-dimensional (3-D) integration is expected to provide several advantages, such as 1) parallel processing, 2) high-speed operation, 3) high packing density, and 4) multifunctional operation. Basic technologies of 3-D IC are to fabricate SOI layers and to stack them monolithically. Crystallinity of the recrystallized layer in SOI has increasingly become better, and very recently crystalaxis controlled, defect-free single-crystal area has been obtained in chip size level by laser recystallization technology. Some basic functional medels showing the concept or image of

a future 3-D IC were fabricated in two or three stacked active lay-

Some other proposals of subsystems in the application of 3-D structure, and the technical issues for realizing practical 3-D IC, i.e., the technology for fabricating high-quality SOI crystal on complicated surface topology, crosstalk of the signals between the stacked layers, total power consumption and cooling of the chip, will also be discussed in this paper.

INTRODUCTION

The ultimate IC structure of the future is thought to consist of stacked active IC layers sandwiched by insulating materials.

Various devices or circuit functions, such as photosensors, logic circuits, memories, and CPUs, will be arranged in each active layer and, as a result, a remarkable improvement in packing density and functional performance will be realized.

In 1979, it was reported that polysilicon deposited on insulator can be melted and recrystallized by laser irradiation [1] and that the crystal perfection of the layer can be adequate to allow the fabrication of devices.

The quality of the recrystallized layer can be characterized by carrier mobility. As shown in Fig. 1, the electron mobility reported so far has increased year by year and has attained a value comparable to bulk crystals. This improvement was a trigger for starting research and development of 3-D ICs.

A partial 3-D structure has already been tried for a dynamic memory (DRAM) cell [2], [3]. For high-density RAMs,

Manuscript received January 23, 1986; revised August 8, 1986. The author is with the LSI R & D Laboratory, Mitsubishi Electric Corporation, 4-1, Mizuhara, Itami, Japan.

0018-9219/86/1200-1703\$01.00 @ 1986 IEEE

Fig. 1. Progress of surface carrier mobility of MOSFET fabricated on SOI layer. O-CW laser; □-electron beam; △carbon strip heater.

such as the 4-Mbit DRAM, the area of the memory cell capacitor is limited, so in order to increase the cell capacitance, a 3-D structure, i.e., a trench cell or a stacked capacitor cell, has been tried. This partial 3-D structure will be used in 2-D VLSIs within a few years.

To achieve a breakthrough in the packing density of advanced VLSIs, it is reasonable to consider a 3-D structure, containing either partially or completely stacked active layers. Fig. 2 shows a forecast of the development of 3-D ICs schematically, as 3-D technology progresses. This figure was obtained from the 3-D IC Research Committee of the 3-D

Fig. 2. Forecast of progress of 3-D technology.

Vol. 74, NO. 12, Dec. 1986

7-level stacked "Nanosheet" gate all around transistor,

Moore's law puts pressure on interconnects

• Consequences of miniaturization

Dramatic R.C product increase \rightarrow interconnect delay

• Countermeasures to reduce R.C

Switch from AI to Cu & Iow-k dielectrics, air gaps **Sangley Concellange Concult** cross section

Back end of line design rules (Intel)

R.C delay has become a major performance issue

New paradigms are needed

• Interconnects Bottleneck

Circuit frequencies limited Limited bandwidth between chips

• Scaling becomes costly

High manufacturing cost, low yield with large die High development cost: masks, IP porting, verif…

• Heterogeneous architectures needed

More processing: AI, perception accelerators… More data to handle: memory capacity, fusion... More modularity, scalability & sustainability

3D benefits for advanced systems

- Best of all trends: Moore + more than Moore System on Chip performance + System in Package diversity
- **High-performance interconnections** Soc performance Low R, L, C + massively parallel vertical processing
- Modern answers to design needs

Partitioning, IP reuse, scalability & density, hetterogeneity

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

3D integration toolbox

2.

lectronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

Morphology of a 3D circuit

3D circuit

• Thin stacked layers

Layer 1 (# bottom die) / (...) / Layer N (# top die) Layer 1 (# bottom die) $/(...)$ / Layer N (# top die)

• Layer-to-layer vertical interconnects **12 Circuit**
 Thin stacked layers

Layer 1 (# bottom die) / (...) / Layer N (# top die)
 Layer-to-layer vertical interconnects

Miniaturization trend: pillars, hybrid bonding ...

• Intra-layer vertical interconnects

Miniaturization trend: p
 Intra-layer vertical interconnects

Communication between frontside and backside of each layer

Through silicon Vias (TSV)
 Intra-layer in-plane interconnects (2D

ReDistribution Layers (RDL)

Assembly configurations

-
- -
	-

Pure packaging operation

Die to die by Wafer to wafer bie to wafer

**Wafer to wafer

Wafer to wafer

Collective process

• High assembly throughput

• High alignment accuracy

• Yield loop Wafer to wafer

Collective process

• High assembly throughput

• High alignment accuracy

• Yield loss Wafer to wafer

• Collective process
• High assembly throughput
• High alignment accuracy
• Yield loss
• Strong design limitation** Θ **: Wafer to wafer

• Collective process

• High assembly throughput

• High alignment accuracy

• Yield loss

• Strong design limitation

• Strong design limitation

• Strong design limitation Wafer to wafer

• Collective process
• High assembly throughput
• High alignment accuracy
• Yield loss
• Strong design limitation

Mass production**

Mass production for image sensors and memories

-
-
-
-
-

Breakthrough processes needed

Wafer bonding techniques
Why & how ?

• Why & how ?

Thin wafer processing (<300µm) Wafer-to-wafer 3D stacking **Wafer bonding techniques

Why & how ?

Thin wafer processing (<300µm)

Wafer-to-wafer 3D stacking

Temporary <u>or</u> permanent bonding

A wide range of processes**

• A wide range of processes

Each with own strengths and weaknesses

Direct bonding process

Bonding without added material Fig. 30.

Based on attraction of very smooth surfaces Flatness & cleanliness at all scales \rightarrow planarisation

• SiO₂/SiO₂ bonding

Required roughness < 0,65nm rms [1] Van der Waals interaction at T_{amb} Covalent bonds formed after annealing Required roughness < 0,65nm rms ^[1]

Covalent bonds formed after annealing

Covalent bonds formed after annealing

Required roughness < 0,5nm rms ^[2]

Cu recrystallization during annealing > 200°C ^[3]

Cu recrystall

• Cu/Cu bonding

Required roughness < 0.5 nm rms $^{[2]}$

Cu recrystallization during annealing $>$ 200 $^{\circ}$ C [3]

[1] F. Rieutord, et al. *ECS Trans.*, vol. 3, no. 6, pp. 205–215, 2006

Bonding wave: glass to Si & Si to Si bonding

SiO $_2$ /SiO $_2$ interface after annealing

"TSV last" low density process **"TSV last" low density process**
• Done <u>after</u> full CMOS process $[4]$
Wafer bonding on carrier & low temp. process
AR (= height/diameter) increased over time

Wafer bonding on carrier & low temp. process AR (= height/diameter) increased over time Keep out zone + alignment \rightarrow area penalty

• Industrially mature since 2008

CMOS image sensors

[4] D. Henry et al., Electronic Components and Technology Conference, 2008

"TSV middle" process

**"TSV middle" process

• Done <u>during</u> CMOS process [5]**

Aspect ratio usually > 10, Diameter 2-15 µm

TSV etched & filled with Cu prior to BEOL process Aspect ratio usually > 10, Diameter 2-15 µm TSV etched & filled with Cu prior to BEOL process TSV revealed on backside after Si thinning Reduced keep out zone vs. TSV last

• Industrially mature since 2013

FPGA (Xilinx), DRAM stacks

TSV Middle after CMP TSV co-integrated with microring TSV & CMOS BEOL TSV Structure

resonators

"High density TSV" (HD-TSV) process flow W **"High density TSV" (HD-TSV)**
• Done <u>after</u> circuit processing ^[6]
Diameter typically < 2µm & height <15 µm
Ultra-uniform Si thinning (TTV < 1µm) \rightarrow direct bonding

Diameter typically < 2µm & height <15 µm Ultra-uniform Si thinning (TTV < $1 \mu m$) \rightarrow direct bonding

R&D activity

Power delivery network (PDN), SPAD arrays

Layer-to-layer 3D interconnects

**Solder-based interconnects
Solder material choice linked to temp
SnPb (183°C), SnAg (221°C), (...) In (152°C)
Interconnects processing** Solder-based interconnects for flip-chip

• Solder material choice linked to temperature

• Interconnects processing

Paste printing, ball serigraphy for large geometries Semi-additive process (ECD) for reduced pitch **Solder-based interconnects for flip**
 Solder material choice linked to temperature

SnPb (183°C), SnAg (221°C), (...) In (152°C)
 Interconnects processing

Paste printing, ball serigraphy for large geometries

Semi-ad Paste printing, ball serigraphy for large geome

Semi-additive process (ECD) for reduced pitch

Polymer underfill systematically added in free Ste printing, ball serigraphy for large geon

mi-additive process (ECD) for reduced pi

ymer underfill systematically added in fre

Paste printing

Paste printing

Paste printing

Paste printing

Paste printing

Paste prin Serigraphy for large geometries

ess (ECD) for reduced pitch

ystematically added in free space

The space

For cu/SnAg

ECD

The spac

ECD ECD ECD

ECD Semi-additive process 2-layer stack on BGA: 10µm Pillars between top and bottom and 70µm bumps between bottom and BGA [7]

• Well mature technique, but limited in density

¹P. Coudrain et al., ECTC 2019

Direct hybrid bonding process: a hot topic !

• Mix $\text{SiO}_2/\text{SiO}_2$ & Cu/Cu bonding

Precautious chemical mechanical polishing $\frac{5}{3}$ Specific design rules to control dishing in Cu

• Unprecedented interconnect pitch

1 μ m pitch demonstrated in 2017^[9], 0.4 μ m in 2024 Precision alignment is key: 50nm expected in 2025

Direct hybrid bonding principle

[8] Y. Beilliard, PhD Thesis, Univ. Grenoble Alpes, 2015

vs. pitch reduction

 $\frac{1}{\sqrt{2}}$ With pitch reduction, EM defect moves from BEOL to hybrid bonding levels, but extrapolated lifetimes are not affected at use conditions [10,11]

• No diffusion identified, thanks to the presence of 3 nm $Cu₂O$ layer barrier, stable with time and temperature

[16] Ayoub et al., IRPS 2022 [17] Ayoub et al., Micro rel. 2023

Hybrid bonding with Cu/SiCN (imec)

• Hybrid surface Cu/SiCN [13]

Annealing down to 250°C with SiCN Cu protrusion on top wafer Cu recess on bottom wafer

• Dissymmetrical pad sizes

Fig. 15. FIB-SEM cross section: 180 nm pad on 720 nm pad at 0.9 μ m pitch.

Non Cu-based bonding

**Non Cu-based bonding
• Ti/Ti hybrid bonding ^[18]
×3 µm² pad, 7 µm pitch with sub-µm alignment
Reliability & RF characterisations up to 40 GHz** 3x3 μ m² pad, 7 μ m pitch with sub- μ m alignment Reliability & RF characterisations up to 40 GHz

Interface after thermal storage (top) and thermal cycling (bottom)

• Nb/Nb bonding [19-20]
Superconducting interconnects
 μ m² pad, 7 μ m pitch with sub- μ m alignment Superconducting interconnects 3x3 μ m² pad, 7 μ m pitch with sub- μ m alignment

23

Die-to-wafer hybrid bonding challenges

• Known Good Die strategy [21-22]

Probing marks to make compatible with bonding

• Pitch reduction trend [23]

Alignment precision is the key to success Multi-pitch for design flexibility, reduced interdie-space

pileup

The contract of the contra

Alignment precision for 5µm pitch

³ x 3 mm²

^{3 x 3} mm²

Die-to-wafer integration with 40µm inter-die spacing [24]
 D-T-W alignment precision is (24)

P. Metzger et al., Minapad 2022

P. Coudrain, Topical Workshop on Electronics for Particle Physi E. Bourjotet al., ESTC 2022

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to Octor

P. C. Bourjotet al., ESTC 2022

P. Coudrain, Topical Workshop on Electronics pileup

hollow

Probing marks
 E. Bourjot et al., 3DIC 2019

PRODITION D-T-W alignment

PRODITION PROPERTY PROPERTY

P. Description (2019)

P. Coudrain, Topical Workshop on Electronics for

P. Coudrain, Topical Workshop Pileup

Probing marks

Probing marks

Die-to-wafer integration

22] E. Bourjot et al., BDC 2019

PRICE 2021

P. Ocudrain, Topical Workshop on Electronics for

P. Coudrain, Topical Workshop on Electronics for

P. Coudrain, • 500nm D-T-W alignment precision is expected in 2024-25

Die-to-wafer integration with 40µm inter-die spacing [24]

Probing marks

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

Self-assembly approach for hybrid bonding

• Capillary-assisted process [25-27]

Drop of water between chip and substrate Liquid capillary tension minimizes surface energy Water confinement controls alignment accuracy

Self-assembly performance [28]

• Electrical performance

Daisy chains up to 50 000 connexions with resistance similar to standard die-to-wafer hybrid bonding

Better ultimate alignment is achieved with selfassembly

Self aligned daisy chains

Ce $[28]$
Standard bonding Self-assembly bonding
 $S_{\frac{2}{3}}$ **Self-assembly performance**

• **Electrical performance**

Daisy chains up to 50 000 connexions with

resistance similar to standard die-to-wafer

hybrid bonding

• **Alignement performance**

Better ultimate alignment is ach -5 -5 -5 -4 -3 -2 -1 0 1 2 3 $4 \overline{5}$ $-5 - 4$ -3 X -axis misalignment (μ m) **Cumulative Percentage** 30% $96%$ 76% **Cumulative Percentage** 30% 25% 2.5% 20% $22%$ 20% 15% 15% 10% $10%$ $50/$ $50/$ 000

Misalignment (nm)

-2 -1 0 1 2 3 $\overline{4}$ X-axis misalignment (µm)

Misalignment (nm)

Fields benefiting from 3D architectures 3.

(a few)

Benefits of 3D Integration for image sensors

• Dimensions

Reduced form factor (x,y,z)

• New architectures!

Parallel pixel processing Layers functionalization & optimization

[4] D. Henry et al., Electronic Components & Technology Conference, 2008

 $^{[31]}$ T. Tanaka et al., IEDM, 2007 28

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

 $\underline{\text{cea}}$

3D image sensor integrated by µbumping

• CMOS image sensor with image signal processor (ISP) [32]

Compactness & energy efficiency improvement

3D technology features

1.4µm pixel CIS with TSV last integration ISP with Fan-In RDL & µbumps ISP bumping on CIS backside

3D sensor cross section

CIS backside without & with ISP stacking

Post-balling overview

Medipix hybrid pixel detectors
• **Abuttable detector on ROIC**
Abuttable sensors assembly with no dead zone
TSV last integration, 100 TSV per chip^[33] Medipix hybrid pixel detectors
Abuttable detector on ROIC

**Abuttable detector on ROIC
Abuttable detector on ROIC
Abuttable sensors assembly with no dead zone
TSV last integration, 100 TSV per chip^[33]
Height 120 µm, diameter 60 µm** TSV last integration, 100 TSV per chip [33] Height 120 µm, diameter 60 µm

cea

30

BSI process flow

• 3-layer CIS (2017)

Intermediate DRAM layer [36]

Backside illumination as enabler for 3D CIS

- **Backside illumination process requires wafer** bonding on a carrier. There's just one step to **Backside illumination as enabler formation**
Backside illumination process requires wafer
bonding on a carrier. There's just one step to
3D integration: replace carrier by a functional wafer!
	- 2-layer CIS (2013)

Oxide bonding [34] followed by hybrid bonding [35]

SiO2/SiO2 bonding

Hybrid bonding

Smart imager developments

• From imagers to vision sensors

Edge-AI applications for autonomous vehicle

3-layer scheme [37]

Pixel array / Readout IC / AI & memory layer 2 hybrid bonding with 1x10um HD-TSV Autonomous vehicle functions

1x10μm TSV (2μm pitch), R_{TSV} = 500mΩ
Misalignment HB2: max. 1 μm (avg 200 nm)

Complete structure with 2 hybrid bonding and 1x10µm HD TSV [38]

12 80 240 880 1680 3280 4400 6480

bonding/HD TSV transitions

2-layer stacked 4T pixels CMOS Image Sensors

Pixel split for full well increase $[39]$

BSI pinned photodiode + transfer gate on layer 1 RST, source follower & read transistors on layer 2

Sequential integration mandatory

Misalignment between layer << 1 µm Mono. Si transfer + low temp. CMOS process Monocristalline Si layer transfer [1]

2-layer pixel schematics based on 3D sequential integration

Deep photodiodes, oxide-based full trench isolation (FTI), 1µm dual photodiodes [40]

Sequential 3D combined with hybrid bonding

Increased diode area

44% for 1.4µm pitch

Smart pixel

Adaptation, calibration

Pre-processing
 $\mathbf{E} \equiv \mathbf{E}$ Pre-processing

-
-
-
-

Opportunity for pixel partitioning with pitch in the µm range and distributive computing for high efficiency [41]

cea

**3D integration for SPAD sensors
Separating detection & readout [42]**

Separating detection & readout [42]

Layer optimization: CIS (90nm) & CMOS (22nm) Better sensitivity, high FF, low DCR, functionality

• 3D technology largely evolved

Bridges [43], oxide bonding with metal vias [44] Bumping, hybrid bonding [45]

3D Geiger-Mode APD with Two SOI Timing Circuit Layers [3]

35

& Cu-Cu bonding [43]

Chiplet approach: Heterogenous IC design
Chiplet approach: Heterogenous IC design

• Interposer & chiplets

Interconnects performance \rightarrow R.C delay Exceeding latency & bandwidth limits Cost/form factor advantages

- Appropriate partitioning MONOLITHICSOC
- Heterogeneous IC design

Optimized technology for each function specialization by app.: CPU, GPU, AI (...) Standardization (coming soon, hopefully)

Trendy application fields for interposers

• Active interposers

Interconnect performance, power management, network on chip…

Chiplet on interposer topology

Chiplets 28nm FDSOI 6x22mm²

Interposer 65nm 200mm²

INTACT active interposer [46]

Photonic interposers [47]

Reduced on-chip latencies & energy consumption, increased bandwidth

TSV mid (12x100µm) coafter Metal 1

Silicon Photonic Interposer with the state of Nb vias 4 chiplets and 6 electro-optical drivers in 28nm FD-SOI

Quantum interposers [48]

Superconducting routing

12 13 14 15 Temperature (K)

Superconducting interconnect assessment

[46] P. Coudrain et al., ECTC 2019 [47] D. Saint-Patrice, ECTC 2023

[48] C. Thomas et al., Materials for Quantum Technology, 2, 3, 035001, (2022)

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

3.
A few words about
fan-out wafer level fan-out wafer level packaging (FOWLP)

3.

The idea behind fan-Out wafer-level packaging

- BGA, Blossoming of interconnections beyond the chip physical footprint LGA…
- QFN Substrate such as BGA or QFN • Collective process, without intermediate
	- Based on a wafer reconstruction approach (ex. eWLB[49])

FOWLP process in a nutshell

 $C22$

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

FOWLP high frequency applications examples **FOWLP high frequency applicatio**
• 77 GHz automotive radars [50] • 5G Fro
Chip surface no longer defined by that of I/O pads, GaAs LNA
as connections are extended outside the chip package. Ther **Cations examples**
GaAs LNA & GaN HPA co-integration within
Raas LNA & GaN HPA co-integration within
Rage. Thermal dissipation from backside cavity **plications examples**
• 5G Front-End modules ^[51]
GaAs LNA & GaN HPA co-integration within
package. Thermal dissipation from backside cavity

Chip surface no longer defined by that of I/O pads, \vert GaAs LNA & GaN HPA co-integration within

 $(550 \times 550 \times 100 \text{ }\mu\text{m}^3)$

SIGe mixer die

SO x 550 x 100 µm³)

 EFR

SING

SING

SING

SING

SING

SING

SING

THE DO DES PRESSURE SIP

DO WAFER 21.4 11.7

PACKARGE DO WAFER 21.4 11.7

PACKARGE DO WAFER 21.4 11.7

FRESSURE SIP

CO. S X 1.5 Mm SIGe mixer die

SO x 550 x 100 µm³)

Voce BIAS

New Reference Planes IFX

FENCE DE DARGREE GARGE GAB NF_{SSB} (dE

TEN FENCE DO Wafer 21.4 11.7

EWLB SiP

(2.5 x 1.5 mm²) SiP on characterization board

FENCE 2008

FENCE EXTERE THE CONTROLLS CONTROLLS AND RESERVED SIP SINGLET ON A CONTROLLS C Sige mixer die National Registration (Second Party) and Regis)

• 5G Front-End modules [51]

as connections are extended outside the chip | package. Thermal dissipation from backside cavity

P. Coudrain, Topical Workshop on Electronics for Particle Physics (TWEPP 2024), Glasgow, September 30th to October 4th 2024

Through mold interconnects for 3D FOWLP [52] **Expansive Concerned Starting Co**

Take-home messages

- Advanced packaging has become a driver of innovation in electronics, System-in-Package becomes the norm Chiplets on photonic interposer 3D approaches able to answer design needs Image sensors played pioneering role in the advent of adv. packaging
- It is now conceivable that any heterogeneous architecture can be realized in one way or another, but… Superconducting Nb/Nb bonding for

Cost-performance trade-off, timely development Standardization & efficiency, ecological impact \rightarrow still very much in the spotlight

Designers are often not fully aware of the toolbox available \rightarrow come & discuss!

quantum interposers

Thanks for your attention

CEA-Leti, Grenoble, France cea-leti.com perceval.coudrain@cea.fr

