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Motivation for Supersymmetry

SUPERSYMMETRY IS THE
ANSWER!

BosonBoson Fermion
Supersymmetry

Solves Hierarchy Problem

In R-parity conserving (RPC) scenario,
Lightest SUSY Particle (LSP) could be
a DM candidate
(Rp = (−1)(3L+B+2S))

Resolves (g − 2)µ anomaly
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Why R-parity Violation?

SM and RPC MSSM scenarios cannot generate
neutrino mass

How to generate neutrino mass???

Seesaw extension of SM

Without Wienberg operator, neutrino mass can be generated through
R-parity violation
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R-parity violation

Consequence:
LSP decays to SM particles

E/T is smaller compared to RPC MSSM

lepton/jet multiplicity is higher in RPV scenarios

NO SUSY PARTICLE IS FOUND SO FAR!
Resulting lower mass bounds on these particles at the LHC

Stringent mass bound exist for squark
and gluinos. [ATLAS Collabora-

tion:https://cds.cern.ch/record/2686254]

Mass bounds on Electroweakinos are
less stringent.

Light EW sector contributes to Muon
g-2 [arXiv:1511.08874]

Correct DM relic abundance can be
predicted through gravitino LSP
[hep-ph/0005214]
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R-parity violation

WRPV
MSSM = WMSSM + 1
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Different RPV Couplings

χ̃0
1

l

l

ν

λ

ij = 12 ij = 13 ij = 23
k = 1 eeνµ (50%), eµνe (50%) eeντ (50%), eτνe (50%) eµντ (50%), eτνµ (50%)
k = 2 µeνµ (50%), µµνe (50%) µeντ (50%), µτνe (50%) µµντ (50%), µτνµ (50%)
k = 3 τeνµ (50%), τµνe (50%) τeντ (50%), ττνe (50%) τµντ (50%), ττνµ (50%)
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Final States for different RPV Couplings

Non-zero Charged lepton configuration Remarks
couplings (Branching Ratios) (l = e, µ only)

λ121 4e(25%) 3e1µ(50%) 2e2µ(25%) 4l (100%)
λ122 4µ(25%) 3µ1e(50%) 2e2µ(25%) Scenario-I

λ131 4e(25%) 3e1τ(50%) 2e2τ(25%) 4l(25%)
λ232 4µ(25%) 3µ1τ(50%) 2µ2τ(25%) 3l1τ(50%)
λ132 2µ2e(25%) 1e2µ1τ(50%) 2µ2τ(25%) 2l2τ(25%)
λ231 2e2µ(25%) 2e1µ1τ(50%) 2e2τ(25%) Scenario-II

λ123 2e2τ(25%) 1e1µ2τ(50%) 2µ2τ(25%) 2l2τ(100%)
Scenario-III

λ133 2e2τ(25%) 1e3τ(50%) 4τ(25%) 2l2τ(25%)
λ233 2µ2τ(25%) 1µ3τ(50%) 4τ(25%) 1l3τ(50%)

4τ(25%)
Scenario-IV
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Electroweakino Production
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For Nlep ≥ 4 final state, the dominant SM backgrounds are ZZ, tt̄Z and WWZ

Other SM backgrounds are from W±ZZ,ZZZ and Higgs (via GGF, associated
production with jets, W and Z)
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Distribution of Kinematic variables @HL-LHC

3 Benchmark Points are choosen:

1. BP1 (m
χ̃±1

= 1600 GeV,mχ̃0
1

= 250 GeV)

2. BP2 (m
χ̃±1

= 1800 GeV,mχ̃0
1

= 800 GeV)

3. BP3 (m
χ̃±1

= 1950 GeV,mχ̃0
1

= 1850 GeV)

pl1T ≥ 100 GeV cut is given at generation
level for SM backgrounds

meff =
∑

i

pli
T +

∑
i

pji
T + E/T

2 signal regions are defined:

SR-A: Nl ≥ 4+Z veto + b veto +
meff > 900 GeV

SR-B: Nl ≥ 4+Z veto + b veto +
meff > 1500 GeV

Subhadeep Sarkar Indian Institute of Technology Patna 10 / 28



Distribution of Kinematic variables @HL-LHC

3 Benchmark Points are choosen:

1. BP1 (m
χ̃±1

= 1600 GeV,mχ̃0
1

= 250 GeV)

2. BP2 (m
χ̃±1

= 1800 GeV,mχ̃0
1

= 800 GeV)

3. BP3 (m
χ̃±1

= 1950 GeV,mχ̃0
1

= 1850 GeV)

pl1T ≥ 100 GeV cut is given at generation
level for SM backgrounds

meff =
∑

i

pli
T +

∑
i

pji
T + E/T

2 signal regions are defined:

SR-A: Nl ≥ 4+Z veto + b veto +
meff > 900 GeV

SR-B: Nl ≥ 4+Z veto + b veto +
meff > 1500 GeV

Subhadeep Sarkar Indian Institute of Technology Patna 10 / 28



Cut-flow and Significance for Scenario-I

Cut variables
Signal Region

Nl ≥ 4
(l = e, µ) +

pl1T > 100 GeV Z veto b veto
SR-A

(meff > 900)
SR-B

(meff > 1500)

BP1 172.35 145.98 96.22 94.74 81.35

BP2 74.68 70.61 46.34 46.25 43.76

BP3 32.42 30.83 19.56 19.55 19.29

ZZ + jets 17350 126.56 115.63 5.79 1.12
tt̄Z + jets 2320 183.21 43.25 5.25 0.73

WWZ + jets 378.77 29 25.67 6.32 1.33
Others 2.075 × 103 44.05 37.37 2.83 0.318

Total background 20.19 3.498

Signal Significance σss
( σεss, Sys. Unc.=5%)

BP1(1600,250) 8.84 (7.79) 8.83 (8.02)
BP2(1800,800) 5.67 (5.25) 6.36 (6.02)
BP3(1950,1850) 3.10 (2.96) 4.04 (3.93)
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Projected exclusion for different scenarios

Projected exclusion @HL-LHC for mχ̃0
1

= 800 GeV

Scenarios Br. ratios Projected exclusion Projected exclusion
from LSP pair in GeV with 20% sys. unc

Scenario-I 4l (100%) 2180 2120
4l (25%)

Scenario-II 3l1τ (50%) 2080 2020
2l2τ (25%)

Scenario-III 2l2τ (100%) 1900 1840
2l2τ (25%)

Scenario-IV 1l3τ (50%) 1740 1680
4τ (25%)

IS THERE ANY CHANCE OF IMPROVEMENT IF I USE
MACHINE LEARNING?
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Machine Learning: Need of the hour
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Basics of ML

Q. Describe the following picture.

A. A fish in a sea.
Q. How do we know?
A. Our brain is trained to identify them.

In a same way we can train (to learn) our
code (machine) to indentify Signal (fish)
and Backgraound (sea) from a given dataset

Neural Network

Decision Tree
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Basics of BDT algorithms

While it is hard to make good learner, it is
easy to build weak learners

At each step, the events which are
misclassified (signal as background, or vice
versa), are given a larger weight, or
boosted, and the a new tree is built on
the new weights

eXtreme Gradient Boosting algorithm

Scalable to almost all scenarios

High accuracy

Subhadeep Sarkar Indian Institute of Technology Patna 15 / 28



Basics of BDT algorithms

While it is hard to make good learner, it is
easy to build weak learners

At each step, the events which are
misclassified (signal as background, or vice
versa), are given a larger weight, or
boosted, and the a new tree is built on
the new weights

eXtreme Gradient Boosting algorithm

Scalable to almost all scenarios

High accuracy

Subhadeep Sarkar Indian Institute of Technology Patna 15 / 28



Basics of BDT algorithms

While it is hard to make good learner, it is
easy to build weak learners

At each step, the events which are
misclassified (signal as background, or vice
versa), are given a larger weight, or
boosted, and the a new tree is built on
the new weights

eXtreme Gradient Boosting algorithm

Scalable to almost all scenarios

High accuracy

Subhadeep Sarkar Indian Institute of Technology Patna 15 / 28



Basics of BDT algorithms

While it is hard to make good learner, it is
easy to build weak learners

At each step, the events which are
misclassified (signal as background, or vice
versa), are given a larger weight, or
boosted, and the a new tree is built on
the new weights

eXtreme Gradient Boosting algorithm

Scalable to almost all scenarios

High accuracy

Subhadeep Sarkar Indian Institute of Technology Patna 15 / 28



Hyperparameters

Learning rate
Small learning rate Large learning rate

Depth of a tree
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ML-Baesd Analysis @HL-LHC

We implement multiclass classification

18 input features: pl1T , pl2T , ∆RlAlB (A,B ∈ [1, 4],A 6= B), ∆φE/TlA , Nb, Nj ,
NSFOS , NZ , E/T, meff

Tuned hyperparameters: learning rate=0.03, number of trees=500, maximum
depth=10

0 2 4 6 8 10
mean(|SHAP value|) (average impact on model output magnitude)

Rl1l3

Rl1l2

Nsfos

Nj

pl1
T

Nb

pl2
T

Emiss
T

meff

NZ

BP2
ZZ
ttZ
WWZ
WZZ
ZZZ
hGGF
hjj
Wh
Zh
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Signal Significance and Projected reach using ML @HL-LHC

Benchmark Sinal Significance Signal Significance Gain
Points at cut-based ML-based

BP1 (1600,250) 8.84 12.61 43%
BP2 (1800, 800) 6.36 8.48 33%
BP3 (1950, 1850) 4.04 5.63 38%

Projected exclusion @HL-LHC for mχ̃0
1

= 800 GeV

Scenarios Br. ratios Projected exclusion Projected exclusion
from LSP pair in GeV with 20% sys. unc

Scenario-I 4l (100%) 2340 2275

4l (25%)
Scenario-II 3l1τ (50%) 2240 2175

2l2τ (25%)

Scenario-III 2l2τ (100%) 2050 1985

2l2τ (25%)
Scenario-IV 1l3τ (50%) 1935 1870

4τ (25%)
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Findings @HL-LHC

Let’s put everything in a figure:
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Improvement!Improvement!
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Kinematic variables distribution @HE-LHC

3 Benchmark Points are choosen:
1. BP4 (m

χ̃±1
= 2300 GeV,mχ̃0

1
= 250 GeV)

2. BP5 (m
χ̃±1

= 2900 GeV,mχ̃0
1

= 1200 GeV)

3. BP6 (m
χ̃±1

= 3100 GeV,mχ̃0
1

= 3000 GeV)

pl1T ≥ 150 GeV cut is given at generation
level for SM backgrounds

2 signal regions are defined:

SR-C: Nl ≥ 4+Z veto + b veto +
meff > 1500 GeV

SR-D: Nl ≥ 4+Z veto + b veto +
meff > 2200 GeV
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Cut-flow for Scenario-I @HE-LHC

Signal Region

Cut variables

Nl ≥ 4

(l = e, µ) +

pl1T > 150 GeV Z veto b veto SR-C
(meff > 1500)

SR-D
(meff > 2200)

BP4 307.61 266.84 179.46 173.43 147.48
BP5 71.72 69.89 47.51 47.31 45.54
BP6 41.19 39.57 25.06 24.97 24.77

ZZ + jets 15980 125.38 108.31 6.01 1.2
tt̄Z + jets 5814 467.27 103.94 6.77 1.73

WWZ + jets 742.03 57.42 47.49 8.21 2.30
WZZ + jets 414.87 7.93 6.02 1.09 0.27
ZZZ + jets 142.17 1.47 1.06 0.08 0.02
h via GGF 3490 34.51 29.30 1.47 0.33

hjj 40.59 9.92 7.86 0.07 0
Wh + jets 9.81 3.04 2.53 0.04 0.003
Zh + jets 7.08 1.42 1.06 0.02 0.003

Total background 23.76 5.86

Signal Significance σss
(σεss, Syst. Unc. = 5 %)

BP4(2300,350) 12.35 (10.10) 11.90 (10.12)
BP5(2900,1200) 5.61 (5.17) 6.35 (5.98)
BP6(3100,3000) 3.58 (3.37) 4.47 (4.31)
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Projected exclusion for different sccenarios @HE-LHC

Projected exclusion @HL-LHC for mχ̃0
1

= 1200 GeV

Scenarios Br. ratios Projected exclusion Projected exclusion
in GeV with 20% sys. unc

Scenario-I 4l (100%) 3620 3480

4l (25%)
Scenario-II 3l1τ (50%) 3400 3260

2l2τ (25%)

Scenario-III 2l2τ (100%) 3080 2940

2l2τ (25%)
Scenario-IV 1l3τ (50%) 2780 2640

4τ (25%)
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ML-Baesd Analysis @HE-LHC

0 2 4 6 8 10
mean(|SHAP value|) (average impact on model output magnitude)

Nb

Nsfos

Rl2l3

Rl1l3

Rl1l2

pl1
T

pl2
T

Emiss
T

meff

NZ

BP5
ZZ
ttZ
WWZ
WZZ
ZZZ
hGGF
hjj
Wh
Zh

Benchmark Sinal Significance Signal Significance Gain
Points at cut-based ML-based

BP4 (2300,250) 12.35 18.69 51%
BP5 (2900, 1200) 6.35 8.42 33%
BP6 (3100, 3000) 4.47 6.41 43%
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Projected exclusion for different sccenarios @HE-LHC

Projected exclusion @HL-LHC for mχ̃0
1

= 1200 GeV

Scenarios Br. ratios Projected exclusion Projected exclusion
from LSP pair in GeV with 20% sys. unc

Scenario-I 4l (100%) 3940 3850

4l (25%)
Scenario-II 3l1τ (50%) 3790 3700

2l2τ (25%)

Scenario-III 2l2τ (100%) 3450 3360

2l2τ (25%)
Scenario-IV 1l3τ (50%) 3200 3115

4τ (25%)
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Findings @HE-LHC
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Summary

SUSY: a savior to SM shortcomings

Electroweakino mass bounds are relatively weaker as compared to the strong sector

To probe the prospects of λ121 and/or λ122 couplings, we choose Nl ≥ 4 (l = e, µ)
channel

Using ML algorithms, we obtain 2σ exclusion reach for HL-LHC (HE-LHC) is
∼ 2.37 (4) TeV from electroweakino production

Our proposed signal region is also effective for τ -enriched states, but fives weaker limit
as compared to λ121/λ122
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