Improving sensitivity of trilinear R-parity violating SUSY searches using machine learning at the LHC

Subhadeep Sarkar

Indian Institute of Technology Patna

October 18, 2024

In collaboration with A. Choudhury, A. Mondal and S. Mondal [Based on Phys.Rev.D 109 (2024) 3, 035001]

INTERNATIONAL SYMPOSIUM ON HIGH ENERGY PHYSICS

Subhadeep Sarkar Indian Institute of Technology Patna

1/28

THE STANDARD MODEL

CUARKS LEPTONS BOSONS HIGGS BOSON

• • = • • = •

æ –

THE STANDARD MODEL

OUARKS ELEPTONS BOSONS HIGGS BOSON

• • = • • =

э.

SHORTCOMINGS:

Subhadeep Sarkar Indian Institute of Technology Patna 2/28

THE STANDARD MODEL

OUARKS LEPTONS BOSONS HIGGS BOSON

• • = • • = •

э.

SHORTCOMINGS:

THE STANDARD MODEL

OUARKS LEPTONS BOSONS HIGGS BOSON

SHORTCOMINGS:

Subhadeep Sarkar Indian Institute of Technology Patna

2/28

• • = • • =

э.

THE STANDARD MODEL

CUARKS LEPTONS BOSONS HIGGS BOSON

SHORTCOMINGS:

Subhadeep Sarkar Indian Institute of Technology Patna 3/28

▶ < 문 > < 문 >

∃ 𝒫𝔅

ъ.

• Solves Hierarchy Problem

3 → 4 3

Ξ.

- Solves Hierarchy Problem
- In R-parity conserving (RPC) scenario, Lightest SUSY Particle (LSP) could be a DM candidate $(R_p = (-1)^{(3L+B+2S)})$

∃ 𝒫𝔅

- Solves Hierarchy Problem
- In R-parity conserving (RPC) scenario, Lightest SUSY Particle (LSP) could be a DM candidate $(R_p = (-1)^{(3L+B+2S)})$
- Resolves $(g-2)_{\mu}$ anomaly

3

- Solves Hierarchy Problem
- In R-parity conserving (RPC) scenario, Lightest SUSY Particle (LSP) could be a DM candidate $(R_p = (-1)^{(3L+B+2S)})$
- Resolves $(g-2)_{\mu}$ anomaly

A = A = A

SM and RPC MSSM scenarios cannot generate neutrino mass

2

SM and RPC MSSM scenarios cannot generate neutrino mass

How to generate neutrino mass???

▶ < ∃ >

SM and RPC MSSM scenarios cannot generate neutrino mass

How to generate neutrino mass???

- Seesaw extension of SM
- Without Wienberg operator, neutrino mass can be generated through R-parity violation

SM and RPC MSSM scenarios cannot generate neutrino mass

How to generate neutrino mass???

- Seesaw extension of SM
- Without Wienberg operator, neutrino mass can be generated through R-parity violation

Consequence:

- LSP decays to SM particles
- $\bullet \ {\ensuremath{\overline{\mu}_{\mathrm{T}}}}\xspace$ is smaller compared to RPC MSSM
- lepton/jet multiplicity is higher in RPV scenarios

ъ.

∃ ► < ∃ ►</p>

Consequence:

- LSP decays to SM particles
- lepton/jet multiplicity is higher in RPV scenarios

NO SUSY PARTICLE IS FOUND SO FAR!

Resulting lower mass bounds on these particles at the LHC

- Stringent mass bound exist for squark and gluinos. [ATLAS Collaboration:https://cds.cern.ch/record/2686254]
- Mass bounds on Electroweakinos are less stringent.
- Light EW sector contributes to Muon g-2 [arXiv:1511.08874]
- Correct DM relic abundance can be predicted through gravitino LSP [hep-ph/0005214]

 $\mathbf{W_{MSSM}^{RPV}} = \mathbf{W_{MSSM}} + \frac{1}{2}\lambda_{ijk}\mathbf{L}_{i}.\mathbf{L}_{j}\mathbf{e}_{k}^{c} + \lambda'_{ijk}\mathbf{L}_{i}.\mathbf{Q}_{j}\mathbf{d}_{k}^{c} + \frac{1}{2}\lambda''_{ijk}\epsilon_{\alpha\beta\gamma}\mathbf{u}_{i}^{c\alpha}\mathbf{d}_{j}^{c\beta}\mathbf{d}_{k}^{c\gamma} + \mu_{i}\mathbf{H}_{u}.\mathbf{L}_{i}$

- $\lambda_{ijk} = -\lambda_{jik}$ (anti-symmetric in *i* and *j*)
- 9 non-zero coupling values

∃ 𝒫𝔅

A B A A B A

 $\mathbf{W_{MSSM}^{RPV}} = \mathbf{W_{MSSM}} + \frac{1}{2}\lambda_{ijk}\mathbf{L}_{i}.\mathbf{L}_{j}\mathbf{e}_{k}^{c} + \lambda'_{ijk}\mathbf{L}_{i}.\mathbf{Q}_{j}\mathbf{d}_{k}^{c} + \frac{1}{2}\lambda''_{ijk}\epsilon_{\alpha\beta\gamma}\mathbf{u}_{i}^{c\alpha}\mathbf{d}_{j}^{c\beta}\mathbf{d}_{k}^{c\gamma} + \mu_{i}\mathbf{H}_{u}.\mathbf{L}_{i}$

- $\lambda_{ijk} = -\lambda_{jik}$ (anti-symmetric in *i* and *j*)
- 9 non-zero coupling values

Ξ.

▶ ∢ ⊒

 $\mathbf{W_{MSSM}^{RPV}} = \mathbf{W_{MSSM}} + \frac{1}{2}\lambda_{ijk}\mathbf{L}_{i}.\mathbf{L}_{j}\mathbf{e}_{k}^{c} + \lambda'_{ijk}\mathbf{L}_{i}.\mathbf{Q}_{j}\mathbf{d}_{k}^{c} + \frac{1}{2}\lambda''_{ijk}\epsilon_{\alpha\beta\gamma}\mathbf{u}_{i}^{c\alpha}\mathbf{d}_{j}^{c\beta}\mathbf{d}_{k}^{c\gamma} + \mu_{i}\mathbf{H}_{u}.\mathbf{L}_{i}$

- $\lambda_{ijk} = -\lambda_{jik}$ (anti-symmetric in *i* and *j*)
- 9 non-zero coupling values

∃ 𝒫𝔅

프 문 문 프 문

 $\mathbf{W_{MSSM}^{RPV}} = \mathbf{W_{MSSM}} + \frac{1}{2}\lambda_{ijk}\mathbf{L}_{i}.\mathbf{L}_{j}\mathbf{e}_{k}^{c} + \lambda'_{ijk}\mathbf{L}_{i}.\mathbf{Q}_{j}\mathbf{d}_{k}^{c} + \frac{1}{2}\lambda''_{ijk}\epsilon_{\alpha\beta\gamma}\mathbf{u}_{i}^{c\alpha}\mathbf{d}_{j}^{c\beta}\mathbf{d}_{k}^{c\gamma} + \mu_{i}\mathbf{H}_{u}.\mathbf{L}_{i}$

- $\lambda_{ijk} = -\lambda_{jik}$ (anti-symmetric in *i* and *j*)
- 9 non-zero coupling values

▶ 《 臣 》 《 臣 》 臣 の Q () ·

Different RPV Couplings

	ij = 12	ij = 13	ij = 23
k = 1	$ee\nu_{\mu}$ (50%), $e\mu\nu_{e}$ (50%)	$ee \nu_{\tau}$ (50%), $e \tau \nu_{e}$ (50%)	$e\mu\nu_{\tau}$ (50%), $e\tau\nu_{\mu}$ (50%)
k = 2	$\mu e \nu_{\mu} \ (50\%), \ \mu \mu \nu_{e} \ (50\%)$	$\mu e \nu_{\tau} \ (50\%), \ \mu \tau \nu_e \ (50\%)$	$\mu\mu\nu_{\tau}$ (50%), $\mu\tau\nu_{\mu}$ (50%)
k = 3	$\tau e \nu_{\mu} \ (50\%), \ \tau \mu \nu_{e} \ (50\%)$	$\tau e \nu_{\tau} \ (50\%), \ \tau \tau \nu_{e} \ (50\%)$	$\tau \mu \nu_{\tau} (50\%), \tau \tau \nu_{\mu} (50\%)$

Subhadeep Sarkar Indian Institute of Technology Patna 7/28

▶ < 문 > < 문 >

∃ 𝒫𝔅

Non-zero	Charg	ed lepton configu	uration	Remarks
couplings		Branching Ratio	s)	$(l = e, \mu \text{ only})$
λ_{121}	4e(25%)	$3e1\mu(50\%)$	$2e2\mu(25\%)$	4l (100%)
λ_{122}	$4\mu(25\%)$	$3\mu 1e(50\%)$	$2e2\mu(25\%)$	Scenario-I
λ_{131}	4e(25%)	$3e1\tau(50\%)$	$2e2\tau(25\%)$	4l(25%)
λ_{232}	$4\mu(25\%)$	$3\mu 1\tau (50\%)$	$2\mu 2\tau (25\%)$	$3l1\tau(50\%)$
λ_{132}	$2\mu 2e(25\%)$	$1e2\mu 1\tau (50\%)$	$2\mu 2\tau (25\%)$	$2l2\tau(25\%)$
λ_{231}	$2e2\mu(25\%)$	$2e1\mu 1\tau (50\%)$	$2e2\tau(25\%)$	Scenario-II
λ_{123}	$2e2\tau(25\%)$	$1e1\mu 2\tau (50\%)$	$2\mu 2\tau (25\%)$	$2l2\tau(100\%)$
				Scenario-III
λ_{133}	$2e2\tau(25\%)$	$1e3\tau(50\%)$	$4\tau(25\%)$	$2l2\tau(25\%)$
λ_{233}	$2\mu 2\tau (25\%)$	$1\mu 3\tau (50\%)$	$4\tau(25\%)$	$1l3\tau(50\%)$
				$4\tau(25\%)$
				Scenario-IV

▶ ∢ ≣

æ

Electroweakino Production

- For $N_{lep} \ge 4$ final state, the dominant SM backgrounds are ZZ, $t\bar{t}Z$ and WWZ
- Other SM backgrounds are from $W^{\pm}ZZ, ZZZ$ and Higgs (via GGF, associated production with jets, W and Z)

Distribution of Kinematic variables @HL-LHC

3 Benchmark Points are choosen:

1. **BP1**
$$(m_{\tilde{\chi}_1^{\pm}} = 1600 \text{ GeV}, m_{\tilde{\chi}_1^0} = 250 \text{ GeV})$$

2. **BP2** $(m_{\tilde{\chi}_1^{\pm}} = 1800 \text{ GeV}, m_{\tilde{\chi}_1^0} = 800 \text{ GeV})$
3. **BP3** $(m_{\tilde{\chi}_1^{\pm}} = 1950 \text{ GeV}, m_{\tilde{\chi}_1^0} = 1850 \text{ GeV})$

▶ ∢ ≣

Distribution of Kinematic variables @HL-LHC

3 Benchmark Points are choosen:

1. **BP1**
$$(m_{\tilde{\chi}_{1}^{\pm}} = 1600 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 250 \text{ GeV})$$

2. **BP2** $(m_{\tilde{\chi}_{1}^{\pm}} = 1800 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 800 \text{ GeV})$
3. **BP3** $(m_{\tilde{\chi}_{1}^{\pm}} = 1950 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 1850 \text{ GeV})$

• $p_T^{l_1} \ge 100$ GeV cut is given at generation level for SM backgrounds

• 2 signal regions are defined:

SR-A: $N_l \ge 4+Z$ veto + b veto + m_{eff} > 900 GeV

SR-B: $N_l \ge 4+Z$ veto + b veto + $m_{eff} > 1500 \text{ GeV}$

→ < ∃ →</p>

Cut-flow and Significance for Scenario-I

Cut variables				Signal Region	
	$N_l \ge 4$				
	$(l = e, \mu) +$			SR-A	SR-B
	$p_T^{l_1} > 100 \text{ GeV}$	Z veto	b veto	$(m_{eff} > 900)$	$(m_{eff} > 1500)$
BP1	172.35	145.98	96.22	94.74	81.35
BP2	74.68	70.61	46.34	46.25	43.76
BP3	32.42	30.83	19.56	19.55	19.29
ZZ + jets	17350	126.56	115.63	5.79	1.12
$t\bar{t}Z + jets$	2320	183.21	43.25	5.25	0.73
WWZ + jets	378.77	29	25.67	6.32	1.33
Others	2.075×10^{3}	44.05	37.37	2.83	0.318
	Total backgroun	d		20.19	3.498
Signal Significance o		BP1(16	00,250)	8.84 (7.79)	8.83 (8.02)
$\int \sigma^{\epsilon} Svs$	$I_{nc} = 5\%$	BP2(18	00,800)	5.67(5.25)	6.36 (6.02)
$(v_{ss}, bys.$	0110070)	BP3(195	50,1850)	3.10(2.96)	4.04 (3.93)

3 x 4 3

Ξ.

Projected exclusion for different scenarios

P	Projected exclusion @HL-LHC for $m_{\tilde{\chi}_1^0} = 800 \text{ GeV}$					
Scenarios	Br. ratios	Projected exclusion	Projected exclusion			
	from LSP pair	in GeV	with 20% sys. unc			
Scenario-I	4l (100%)	2180	2120			
Scenario-II	$ \begin{array}{r} 4l (25\%) \\ 3l1\tau (50\%) \\ 2l2\tau (25\%) \end{array} $	2080	2020			
Scenario-III	$2l2\tau$ (100%)	1900	1840			
Scenario-IV	$\begin{array}{c} 2l2\tau \ (25\%) \\ 1l3\tau \ (50\%) \\ 4\tau \ (25\%) \end{array}$	1740	1680			

Э

Projected exclusion for different scenarios

P	Projected exclusion @HL-LHC for $m_{\tilde{\chi}_1^0} = 800 \text{ GeV}$					
Scenarios	Br. ratios	Projected exclusion	Projected exclusion			
	from LSP pair	in GeV	with 20% sys. unc			
Scenario-I	4l (100%)	2180	2120			
	4l (25%)					
Scenario-II	$3l1\tau$ (50%)	2080	2020			
	$2l2\tau$ (25%)					
Scenario-III	$2l2\tau$ (100%)	1900	1840			
	$2l2\tau$ (25%)					
Scenario-IV	$1l3\tau$ (50%)	1740	1680			
	$4\tau \ (25\%)$					

IS THERE ANY CHANCE OF IMPROVEMENT IF I USE MACHINE LEARNING?

Machine Learning: Need of the hour

Subhadeep Sarkar Indian Institute of Technology Patna

< ≣ → 13 / 28

三 つへで

<ロト < 回 > < 回 > < 回 > < 回 >

A. A fish in a sea.

Subhadeep Sarkar Indian Institute of Technology Patna 14/28

□ ► < E ► < E ►</p>

2

A. A fish in a sea.Q. How do we know?

Subhadeep Sarkar Indian Institute of Technology Patna 14/28

□ ► < E ► < E ►</p>

2

A. A fish in a sea.Q. How do we know?A. Our brain is trained to identify them.

3 → 4 3

A. A fish in a sea.Q. How do we know?A. Our brain is trained to identify them.

In a same way we can **train** (to learn) our code (machine) **to indentify** Signal (fish) and Backgraound (sea) from a given dataset

Subhadeep Sarkar Indian Institute of Technology Patna 14/28

Neur

Neural Network

- A. A fish in a sea. Q. How do we know?
- A. Our brain is **trained to identify** them.

In a same way we can **train** (to learn) our code (machine) **to indentify** Signal (fish) and Backgraound (sea) from a given dataset

A. A fish in a sea.Q. How do we know?A. Our brain is trained to identify them.

In a same way we can **train** (to learn) our code (machine) **to indentify** Signal (fish) and Backgraound (sea) from a given dataset

Neural Network

Decision Tree

-

Subhadeep Sarkar Indian Institute of Technology Patna 15/28

<ロト <四ト < 国ト < 国ト

= 990

- While it is hard to make good learner, it is easy to build weak learners
- At each step, the events which are misclassified (signal as background, or vice versa), are given a larger weight, or **boosted**, and the a new tree is built on the new weights

▶ ∢ ≣

• At each step, the events which are misclassified (signal as background, or vice versa), are given a larger weight, or **boosted**, and the a new tree is built on the new weights

- $\bullet~{\rm eXtreme}~{\bf G}{\rm radient}~{\bf Boost}{\rm ing}~{\rm algorithm}$
- Scalable to almost all scenarios
- High accuracy

글 🕨 🔺 글:

- While it is hard to make good learner, it is easy to build weak learners
- At each step, the events which are misclassified (signal as background, or vice versa), are given a larger weight, or **boosted**, and the a new tree is built on the new weights

- $\bullet~{\rm eXtreme}~{\bf G}{\rm radient}~{\bf Boost}{\rm ing}~{\rm algorithm}$
- Scalable to almost all scenarios
- High accuracy

Hyperparameters

Learning rate

三 つへで

<ロト < 回 > < 回 > < 回 > < 回 >

Hyperparameters

Learning rate

Depth of a tree

▶ < 문 > < 문 >

2

900

ML-Baesd Analysis @HL-LHC

- We implement multiclass classification
- Tuned hyperparameters: learning rate=0.03, number of trees=500, maximum depth=10

ML-Baesd Analysis @HL-LHC

- We implement multiclass classification
- Tuned hyperparameters: learning rate=0.03, number of trees=500, maximum depth=10

A = A = A

Signal Significance and Projected reach using ML @HL-LHC

Benchmark	Sinal Significance	Signal Significance	Gain
Points	at cut-based	ML-based	
BP1 (1600,250)	8.84	12.61	43%
BP2 (1800, 800)	6.36	8.48	33%
BP3 (1950, 1850)	4.04	5.63	38%

Subhadeep Sarkar Indian Institute of Technology Patna 18/28

Signal Significance and Projected reach using ML @HL-LHC

Benchmark	Sinal Significance	Signal Significance	Gain
Points	at cut-based	ML-based	
BP1 (1600,250)	8.84	12.61	43%
BP2 (1800, 800)	6.36	8.48	33%
BP3 (1950, 1850)	4.04	5.63	38%

Projected exclusion @HL-LHC for $m_{\tilde{\chi}_1^0} = 800 \text{ GeV}$					
Scenarios	Br. ratios	Projected exclusion Projected exclusion			
	from LSP pair	in GeV	with 20% sys. unc		
Scenario-I	4l (100%)	2340	2275		
	4l (25%)				
Scenario-II	$3l1\tau$ (50%)	2240	2175		
	$2l2\tau$ (25%)				
Scenario-III	$2l2\tau$ (100%)	2050	1985		
	$2l2\tau$ (25%)				
Scenario-IV	$1l3\tau$ (50%)	1935	1870		
	$4\tau \ (25\%)$				

Subhadeep Sarkar Indian Institute of Technology Patna 18

Findings @HL-LHC

Let's put everything in a figure:

▶ < 문 > < 문 >

∃ 𝒫𝔅

Findings @HL-LHC

Let's put everything in a figure:

Э

Findings @HL-LHC

Let's put everything in a figure:

Improvement!

Э

ENERGY

Subhadeep Sarkar Indian Institute of Technology Patna 20/28

Kinematic variables distribution @HE-LHC

 $\begin{array}{l} \textbf{3 Benchmark Points are choosen:} \\ 1. \ \textbf{BP4} \ (m_{\tilde{\chi}_{1}^{\pm}} = 2300 \ \text{GeV}, m_{\tilde{\chi}_{1}^{0}} = 250 \ \text{GeV}) \\ 2. \ \textbf{BP5} \ (m_{\tilde{\chi}_{1}^{\pm}} = 2900 \ \text{GeV}, m_{\tilde{\chi}_{1}^{0}} = 1200 \ \text{GeV}) \\ 3. \ \textbf{BP6} \ (m_{\tilde{\chi}_{1}^{\pm}} = 3100 \ \text{GeV}, m_{\tilde{\chi}_{1}^{0}} = 3000 \ \text{GeV}) \end{array}$

- *p*^{l₁}_T ≥ 150 GeV cut is given at generation level for SM backgrounds
- 2 signal regions are defined:

SR-C: $N_l \ge 4+Z$ veto + b veto + $m_{eff} > 1500$ GeV

SR-D: $N_l \ge 4+Z$ veto + b veto + $m_{eff} > 2200$ GeV

伺下 イヨト イヨト

≡ nar

Cut-flow for Scenario-I @HE-LHC

				Signal Region		
	$N_l \ge 4$					
	$(l = e, \mu) + $					
Cut variables	$p_T^{l_1} > 150 \text{ GeV}$	Z veto	b veto	SR-C	SR-D	
	- 1			$(m_{eff} > 1500)$	$(m_{eff} > 2200)$	
BP4	307.61	266.84	179.46	173.43	147.48	
BP5	71.72	69.89	47.51	47.31	45.54	
BP6	41.19	39.57	25.06	24.97	24.77	
ZZ + jets	15980	125.38	108.31	6.01	1.2	
$t\bar{t}Z + jets$	5814	467.27	103.94	6.77	1.73	
WWZ + jets	742.03	57.42	47.49	8.21	2.30	
WZZ + jets	414.87	7.93	6.02	1.09	0.27	
ZZZ + jets	142.17	1.47	1.06	0.08	0.02	
h via GGF	3490	34.51	29.30	1.47	0.33	
hjj	40.59	9.92	7.86	0.07	0	
Wh + jets	9.81	3.04	2.53	0.04	0.003	
Zh + jets	7.08	1.42	1.06	0.02	0.003	
Total background		d		23.76	5.86	
Signal Sign	nificance σ_{aa}	BP4(23	00,350)	12.35(10.10)	11.90 (10.12)	
$(\sigma^{\epsilon} Syst$	IInc = 5 %	BP5(290	00,1200)	5.61(5.17)	6.35(5.98)	
$(\sigma_{ss}, syst.)$	OIIC. = 3 / 0)	BP6(310	0,3000)	3.58(3.37)	4.47 (4.31)	

글 🕨 🔺 글

= 990

Projected exclusion for different sccenarios @HE-LHC

Projected exclusion @HL-LHC for $m_{\tilde{\chi}_1^0} = 1200 \text{ GeV}$					
Scenarios	Br. ratios	Projected exclusion	Projected exclusion		
		in GeV	with 20% sys. unc		
Scenario-I	4l (100%)	3620	3480		
Scenario-II	$ \begin{array}{r} 4l (25\%) \\ 3l1\tau (50\%) \\ 2l2\tau (25\%) \end{array} $	3400	3260		
Scenario-III	$2l2\tau$ (100%)	3080	2940		
Scenario-IV	$2l2\tau (25\%) \\ 1l3\tau (50\%) \\ 4\tau (25\%)$	2780	2640		

P

ML-Baesd Analysis @HE-LHC

mean(SHAP value)	(average i	mpact on r	model c	output r	magnitude;
--------------------	------------	------------	---------	----------	------------

Benchmark	Sinal Significance	Signal Significance	Gain
Points	at cut-based	ML-based	
BP4 (2300,250)	12.35	18.69	51%
BP5 (2900, 1200)	6.35	8.42	33%
BP6 (3100, 3000)	4.47	6.41	43%

Subhadeep Sarkar Indian Institute of Technology Patna

= 990

<ロト < 回 > < 回 > < 回 > < 回 >

Projected exclusion for different sccenarios @HE-LHC

Projected exclusion @HL-LHC for $m_{\tilde{\chi}_1^0} = 1200 \text{ GeV}$			
Scenarios	Br. ratios	Projected exclusion	Projected exclusion
	from LSP pair	in GeV	with 20% sys. unc
Scenario-I	4l (100%)	3940	3850
	4l (25%)		
Scenario-II	$3l1\tau$ (50%)	3790	3700
	$2l2\tau$ (25%)		
Scenario-III	$2l2\tau$ (100%)	3450	3360
	$2l2\tau$ (25%)		
Scenario-IV	$1l3\tau$ (50%)	3200	3115
	4τ (25%)		

P

Findings @HE-LHC

• SUSY: a savior to SM shortcomings

□ > < E > < E >

∃ 𝒫𝔅

- SUSY: a savior to SM shortcomings
- Electroweakino mass bounds are relatively weaker as compared to the strong sector

3 → 4 3

æ

- SUSY: a savior to SM shortcomings
- Electroweakino mass bounds are relatively weaker as compared to the strong sector
- To probe the prospects of λ_{121} and/or λ_{122} couplings, we choose $N_l \ge 4$ $(l = e, \mu)$ channel

э

- SUSY: a savior to SM shortcomings
- Electroweakino mass bounds are relatively weaker as compared to the strong sector
- To probe the prospects of λ_{121} and/or λ_{122} couplings, we choose $N_l \ge 4$ $(l = e, \mu)$ channel
- Using ML algorithms, we obtain 2σ exclusion reach for HL-LHC (HE-LHC) is ~ 2.37 (4) TeV from electroweakino production

э.

- SUSY: a savior to SM shortcomings
- Electroweakino mass bounds are relatively weaker as compared to the strong sector
- To probe the prospects of λ_{121} and/or λ_{122} couplings, we choose $N_l \ge 4$ $(l = e, \mu)$ channel
- Using ML algorithms, we obtain 2σ exclusion reach for HL-LHC (HE-LHC) is ~ 2.37 (4) TeV from electroweakino production
- Our proposed signal region is also effective for τ -enriched states, but fives weaker limit as compared to $\lambda_{121}/\lambda_{122}$

(E) < E)</p>

3

イロト イロト イヨト イヨト

E 99€