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@ Resolves (g — 2) " anomaly squarks  seplons  gauginos  higgsino
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R-parity violation

Consequence:
o LSP decays to SM particles
o Il is smaller compared to RPC MSSM

@ lepton/jet multiplicity is higher in RPV scenarios
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R-parity violation

Consequence:

LSP decays to SM particles
H is smaller compared to RPC MSSM

lepton/jet multiplicity is higher in RPV scenarios

NO SUSY PARTICLE IS FOUND SO FAR!

Resulting lower mass bounds on these particles at the LHC

Stringent mass bound exist for squark
and gluinos. [ATLAS Collabora-
tion:https://cds.cern.ch/record/2686254]

Mass bounds on Electroweakinos are
less stringent.

Light EW sector contributes to Muon
g-2 [arXiv:1511.08874]
Correct DM relic abundance can be

predicted through gravitino LSP
[hep-ph/0005214]
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R-parity violation
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R-parity violation
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R-parity violation

RPV 1 / 1y cf ycy
Wryissm = Wussm + EAijkLi.LjelC{ + )‘ijkLi'Q.idﬁ + E/\ijk€(kﬂ'yuicadj dk + piHy Ly

® \ijr = —Ajix (anti-symmetric in 7 and j)

@ 9 non-zero coupling values
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Different RPV Couplings

[
. A
X1 l
1%
=12 =13 =23

k=11 eev, (50%), epve (50%) | eev, (50%), etv. (50%) | epv, (50%), eTr,, (50%)
k= pev, (50%), ppve (50%) | pevy (50%), ptve (50%) | ppvy (50%), prv,, (50%)
k=31 rer, (50%), Tuve (50%) | Tev,y (50%), TTve (50%) | Tuv, (50%), 71/, (50%)

Subhadeep Sarkar

Indian Institute of Technology Patna

7 /28




Final States for different RPV Couplings

Non-zero Charged lepton configuration Remarks
couplings (Branching Ratios) (I = e, only)
A121 4e(25%) 3elu(50%) 2e21(25%) 41 (100%)
A122 41(25%) 3ule(50%) 2e211(25%) Scenario-I
A131 4e(25%) 3elT(50%) 2e27(25% 41(25%)
232 41(25%) 3ulr(50%) 2u27(25%) 3117 (50%)
32 2u2e(25%)  le2ulT(50%) 2u27(25%) 2127 (25%)
Aos1 2e211(25%)  2elplT(50%) 2e27(25%) Scenario-II
A123 2e27(25%)  lelp27(50%) 2u27(25%) 2127(100%)
Scenario-I11
A133 2e27(25%)  1e37(50%) 47(25%) 2127(25%)
X233 2u27(25%)  1p37(50%) 47(25%) 1137(50%)
47(25%)
Scenario-IV
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Electroweakino Production

e For Nj., > 4 final state, the dominant SM backgrounds are ZZ, ttZ and WWZ

e Other SM backgrounds are from W*ZZ, ZZ 7 and Higgs (via GGF, associated
production with jets, W and Z)
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Distribution of Kinematic variables QHL-LHC

3 Benchmark Points are choosen:

L. BP1 (m+ = 1600 GeV,mzo = 250 GeV)
1

2. BP2 (m + = 1800 GeV,mgo = 800 GeV)
1

3. BP3 (m 1+ = 1950 GeV,mygo = 1850 GeV)
1
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Distribution of Kinematic variables QHL-LHC

3 Benchmark Points are choosen:

L. BP1 (m+ = 1600 GeV,mzo = 250 GeV)
1

2. BP2 (m + = 1800 GeV,mgo = 800 GeV)
1

3. BP3 (mili = 1950 GeV,myo = 1850 GeV)

BP1

BP2
BP3
— ZZ+jets

fiZ+jets
— WWZ+jets

200 200

500 800 000 1200 1400
Leading lepton p, (GeV)

° p[Tl > 100 GeV cut is given at generation
level for SM backgrounds

mer = 00+ Y0k + By

@ 2 signal regions are defined:

BP1

BP2

[ IBP3

— ZZ+jets
tiZ+jets

— WWZ+jets

SR-A: N; > 447 veto + b veto + “
meg > 900 GeV

SR-B: N; > 4+Z7 veto + b veto + |
Meg > 1500 GeV m,, (Gev)
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Cut-flow and Significance for Scenario-I

Cut variables N, >4 Signal Region
(=ep) + SR-A SR-B
pit > 100 GeV | Z veto | b veto | (meps > 900) | (mepy > 1500)
BP1 172.35 145.98 | 96.22 94.74 81.35
BP2 74.68 70.61 46.34 46.25 43.76
BP3 32.42 30.83 19.56 19.55 19.29
47 + jets 17350 126.56 | 115.63 5.79 1.12
ttZ + jets 2320 183.21 | 43.25 5.25 0.73
WWZ + jets 378.77 29 25.67 6.32 1.33
Others 2.075 x 10° 44.05 | 37.37 2.83 0.318
H Total background ‘ 20.19 ‘ 3.498 H
Signal Significance o.. BP1(1600,250) 8.84 (7.79) 8.83 (8.02)
( o%., Sys. Unc.=5%) BP2(1800,800) :5.67 (5.25) 6.36 (6.02)
BP3(1950,1850) 3.10 (2.96) 4.04 (3.93)
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Projected exclusion @HL-LHC for mgo = 800 GeV

Projected exclusion

Projected exclusion

Scenarios Br. ratios
from LSP pair in GeV with 20% sys. unc

Scenario-I 41 (100%) 2180 2120

47 (25%)
Scenario-1T 3l17 (50%) 2080 2020

227 (25%)
Scenario-IIT | 2127 (100%) 1900 1840

2027 (25%)

1740 1680

Scenario-IV

U3r (50%)
41 (25%)
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Scenarios

Br. ratios

Projected exclusion

from LSP pair in GeV with 20% sys. unc
Scenario-I 41 (100%) 2180 2120
47 (25%)
Scenario-1T 3l17 (50%) 2080 2020
227 (25%)
Scenario-IIT | 2(27 (100%) 1900 1840
2027 (25%)
Scenario-1V 1137 (50%) 1740 1680
41 (25%)
??
V3 50
Jul,
b=

Projected exclusion for different scenarios

Projected exclusion @HL-LHC for mgo = 800 GeV
Projected exclusion

IS THERE ANY CHANCE OF IMPROVEMENT IF I USE
MACHINE LEARNING?
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Machine Learning: Need of the hour

payaw|3 sepiiN

John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES
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Q. Describe the following picture.

3 L o 2 N

A. A fish in a sea.

Q. How do we know?

A. Our brain is trained to identify them.

In a same way we can train (to learn) our
code (machine) to indentify Signal (fish)
and Backgraound (sea) from a given dataset
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Basics of ML

Neural Network

A. A fish in a sea.
Q. How do we know?
A. Our brain is trained to identify them.

Branches

In a same way we can train (to learn) our
code (machine) to indentify Signal (fish)
and Backgraound (sea) from a given dataset

Decision Tree
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of BDT algorithms
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@ While it is hard to make good learner, it is
easy to build weak learners

@ At each step, the events which are
misclassified (signal as background, or vice
versa), are given a larger weight, or
boosted, and the a new tree is built on
the new weights

Subhadeep Sarkar Indian Institute of Technology Patna 15 /28



Basics of BDT algorithms

Healthy or not? &b g}
Age >40? bl GB g\Obﬂs/'
Yes No . . .
atsfast foodl? Does exercise? @ eXtreme Gradient Boosting algorithm
/\ @ Scalable to almost all scenarios
Yes No Vs No @ High accuracy
unfit Fit Fit Unfit

@ While it is hard to make good learner, it is
easy to build weak learners

@ At each step, the events which are
misclassified (signal as background, or vice
versa), are given a larger weight, or
boosted, and the a new tree is built on
the new weights

Subhadeep Sarkar Indian Institute of Technology Patna 15 /28



Basics of BDT algorithms

Healthy or not? &b g}
Age >40? bl GB g\Obﬂ A '
Yes No . . .
atsfast foodl? Does exercise? @ eXtreme Gradient Boosting algorithm
@ Scalable to almost all scenarios
Yes No Vs No @ High accuracy
Unfit Fit Fit Unfit

Eu. Plys J. Spec. Top THE EUROPEAN -
/hile it i s Mt rm10. LU apis/1 T3A024 015085 PHYSICAL JOURNAL
@ While it is hard to make good learner, it is sk rg L LD/ SLITS L 010 Prysicat Jo ]

. Regular Article
easy to build weak learners

o At each St€p7 the events which are Searches for the BSM scenarios at the LHC using

misclassified (signal as background, or vice decision tree-based machine leaming algorithms:
) a comparative study and review of random forest,
Versa), are given a larger Weight, or AdaBoost, XGBoost and LightGBM frameworks
. . Arghya Choudhury*®, Arpita Mondal”, and Subhadeep Sarkar®
boosted, and the a new tree is built on
the new weights R 6oy 2024 Ao 23 Augst 221
© The Author(e), under exclusve lience to EDP Seiences, Springer-Verlag GmbH Germany, pact of

Springer Nature 2021
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Hyperparameters

Learning rate

Small learning rate Large learning rate
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Hyperparameters

Learning rate

Small learning rate Large learning rate

Depth of a tree

Depth-wise growth
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ML-Baesd Analysis @QHL-LHC

o We implement multiclass classification
o 18 input features: p', p22, AR; 4, (A, B € [1,4], A # B), A¢p 14, No, N,
Nsros, Nz, B, Meg

o Tuned hyperparameters: learning rate=0.03, number of trees=500, maximum
depth=10
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ML-Baesd Analysis @HL-LHC

o We implement multiclass classification
e 18 input features: pérﬂ pé%7 ARy (A B € [1,4], A # B), Ay 14, Nb, Nj
Nsros, Nz, B, Meg

o Tuned hyperparameters: learning rate=0.03, number of trees=500, maximum

depth=10
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Benchmark Sinal Significance | Signal Significance | Gain
Points at cut-based ML-based

BP1 (1600,250) 8.84 12.61 43%

BP2 (1800, 800) 6.36 8.48 33%

BP3 (1950, 1850) 4.04 5.63 38%
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Benchmark Sinal Significance | Signal Significance | Gain
Points at cut-based ML-based

BP1 (1600,250) 8.84 12.61 43%

BP2 (1800, 800) 6.36 8.48 33%

BP3 (1950, 1850) 4.04 5.63 38%

Projected exclusion @HL-LHC for mgo = 800 GeV

Scenarios Br. ratios Projected exclusion | Projected exclusion
from LSP pair in GeV with 20% sys. unc
Scenario-I 41 (100%) 2340 2275
4 (25%)
Scenario-11 31T (50%) 2240 2175
2127 (25%)
Scenario-IIT | 2(27 (100%) 2050 1985
2121 (25%)
Scenario-IV 1137 (50%) 1935 1870
47 (25%)
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Findings @QHL-LHC

Let’s put everything in a figure:
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Kinematic variables distribution @QHE-LHC

3 Benchmark Points are choosen: _
1. BP4 (m + = 2300 GeV,mgo = 250 GeV) Bt muliold by 20
1

BP5 multiplied by 20|
[ BP6 multiplied by 20|

10°]
2. BP5 (m_+ = 2900 GeV,m o = 1200 GeV) s
X1 X1 ol —— WWZ4jets

3. BP6 (mﬁ: = 3100 GeV,myo = 3000 GeV)

° plTl > 150 GeV cut is given at generation
level for SM backgrounds

@ 2 signal regions are defined:

BP4 multiplied by 20)
BPS multiplied by 20|
SR-C: N; > 4+ 7 veto + b veto + 10 EE'Z’BJ::WP“SG by 20
mesy > 1500 GeV

tiZ+jets
—— WWZsjets

SR-D: N, > 4+Z veto + b veto +
Mepp > 2200 GeV il

nan
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
My (GeV)
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Cut-flow for Scenario-1 QHE-LHC

Signal Region
N; >4
(l=enp) +
Cut variables p% > 150 GeV | Z veto | b veto SR-C SR-D
(7n€f‘f > 1500) (meff > 2200)
BP4 307.61 266.84 179.46 173.43 147.48
BP5 T1.72 69.89 47.51 47.31 45.54
BP6 41.19 39.57 25.06 24.97 24.77
Z7Z + jets 15980 125.38 | 108.31 6.01 1.2
tZ + jets 5814 467.27 | 103.94 6.77 1.73
WWZ + jets 742.03 57.42 47.49 8.21 2.30
WZZ + jets 414.87 7.93 6.02 1.09 0.27
ZZ7 + jets 142.17 1.47 1.06 0.08 0.02
h via GGF 3490 34.51 29.30 1.47 0.33
hjj 40.59 9.92 7.86 0.07 0
Wh + jets 9.81 3.04 2.53 0.04 0.003
Zh + jets 7.08 1.42 1.06 0.02 0.003
I Total background \ 23.76 \ 5.86 |
Signal Significance o, BP4(2300,350) 12.35 (10.10) 11.90 (10.12)
(0t Syst. Unc. = 5 %) BP5(2900,1200) | 5.61 (5.17) 6.35 (5.98)
ss1 DYSt: ’ BP6(3100,3000) 3.58 (3.37) 4.47 (4.31)
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Projected exclusion @HL-LHC for mgo = 1200 GeV

Scenarios Br. ratios Projected exclusion | Projected exclusion
in GeV with 20% sys. unc
Scenario-I 41 (100%) 3620 3480
47 (25%)
Scenario-II | 317 (50%) 3400 3260
2127 (25%)
Scenario-IIT | 2127 (100%) 3080 2940
2127 (25%)
2780 2640

Scenario-1V

137 (50%)

47 (25%)

Subhadeep Sarkar
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ML-Baesd Analysis @HE-LHC
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Points
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51%
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33%
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6.41
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Projected exclusion @HL-LHC for mgo = 1200 GeV

Scenarios Br. ratios Projected exclusion | Projected exclusion
from LSP pair in GeV with 20% sys. unc
Scenario-I 41 (100%) 3940 3850
47 (25%)
Scenario-II 317 (50%) 3790 3700
2127 (25%)
Scenario-111 2127 (100%) 3450 3360
2127 (25%)
1137 (50%) 3200 3115

Scenario-IV

47 (25%)
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Findings @QHE-LHC
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o SUSY: a savior to SM shortcomings
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o SUSY: a savior to SM shortcomings
o Electroweakino mass bounds are relatively weaker as compared to the strong sector

@ To probe the prospects of Aj2; and/or Aj9e couplings, we choose N; >4 (I = e, p)
channel
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o SUSY: a savior to SM shortcomings
o Electroweakino mass bounds are relatively weaker as compared to the strong sector
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SUSY: a savior to SM shortcomings
Electroweakino mass bounds are relatively weaker as compared to the strong sector

To probe the prospects of Aj2; and/or Aj22 couplings, we choose N; >4 (I = e, p)
channel

Using ML algorithms, we obtain 20 exclusion reach for HL-LHC (HE-LHC) is
~ 2.37 (4) TeV from electroweakino production

Our proposed signal region is also effective for 7-enriched states, but fives weaker limit
as compared to Aja1/A122
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