

Université Mohamed V de Rabat

Neutrino Oscillations in a Quantum Walk Framework

KAWTAR EL BOUZAIDI RACHID AHL LAAMARA

HIGH ENERGY PHYSICS MODELING & SIMULATION

Faculté des sciences Rabat

arXiv:2305.13923v2 [quant-ph] 3 Jan 2024

Objectives

STEEREL SEEREL SEEREL

Quantum

Simulation:

A Powerful Tool

Neutrino

oscillation

Neutrino Oscillation

Unveiling the Flavor Flippers: **The Secret Lives of Neutrinos**

- Ever wondered what zips through you undetected? Neutrinos do, and they're tricksters!
- Tiny, ghostly particles that barely interact with matter
- Electron, Muon, Tau
- Neutrinos can change tlavors as they travel!

The Neutrino Flavor Trio:

- Neutrinos come in three flavors: electron (v_e) , muon $(v_{\perp}\mu)$, and tau $(v_{\perp}\tau)$.
- These flavors are linked to the charged leptons they interact with (electron, muon, tau).
- Each flavor interacts differently with matter.
- Neutrino oscillation = mass.

What Makes Them Flip?

- Distance Traveled: More travel time means more chances to switch flavors!
- Neutrino Mass: Different weights (masses) lead to different flip frequencies.
- Neutrino Energy: High-energy neutrinos are less likely to change flavors.

It's like a pachinko machine!!

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}; t) = \sum U^*_{\alpha j} U_{\beta j} e^{-iE_j t}$

Quantum Simulation: A Powerful Tool

arXiv:2305.13923v2 [quant-ph] 3 Jan 2024

Discrete-Time Quantum Walks (DTQW)

Hilbert space H = Hc ⊗ **Hp;**

Hc is coin Hilbert space,

Hp is the position Hilbert space.

Hc is spanned by the basis set | ↑⟩ **& |** ↓⟩ **representing the internal degree of the walker, Hp is spanned by the basis state of the position |x**⟩**. 9**

1

$|\Psi(t)\rangle = |\uparrow\rangle \otimes |\Psi^{\uparrow}(t)\rangle + |\downarrow\rangle \otimes |\Psi^{\downarrow}(t)\rangle$ $=\sum\left|\frac{\psi_{x,t}^{\uparrow}}{\psi_{x,t}^{\downarrow}}\right|.$

The state at time (t + τ) where τ is the time required to implement one step of the walk

$|\Psi(t+\tau)\rangle=S(C\otimes I)|\Psi(t)\rangle=W|\Psi(t)\rangle$

The coin operator

$$
C = C(\xi, \theta, \varphi, \delta) = e^{i\xi} e^{-i\theta \sigma_x} e^{-i\varphi \sigma}
$$

$$
= e^{i\xi} \begin{pmatrix} e^{-i\delta} (c_{\theta}c_{\varphi} - is_{\theta} s_{\varphi}) & -e^{i\delta} \\ e^{-i\delta} (c_{\theta} s_{\varphi} - is_{\theta} c_{\varphi}) & e^{i\delta} \end{pmatrix}
$$

$$
= e^{i\xi} \begin{pmatrix} F_{\theta, \varphi, \delta} & G_{\theta, \varphi, \delta} \\ -G_{\theta, \varphi, \delta}^* & F_{\theta, \varphi, \delta}^* \end{pmatrix}
$$

The shift operator

$S = |\downarrow\rangle\langle\downarrow| \otimes T_+ + |\uparrow\rangle\langle\uparrow| \otimes T_- = \begin{bmatrix} T_+ & 0 \\ 0 & T_- \end{bmatrix}$ **where** $T_{\pm} = \sum |x \pm a\rangle \langle x|$ $x \in \mathbb{Z}$

The initial state of the walker

$|\Psi(0)\rangle = |\chi\rangle \otimes |\psi_x\rangle.$

where ξ is global phase angle, 20, 2 φ , 28 are the angles of rotations along x, y **and z axes respectively and σi is the ith component of the Pauli spin matrices**

The density matrix representation of the state $\rho(t)=|\Psi(t)\rangle\langle\Psi(t)|$ $=W^{t}|\Psi(0)\rangle\langle\Psi(0)|(W^{\dagger})^{t}.$

we can trace over the position space to get $\rho_c(t) = \sum \langle x | W^t | \Psi(0) \rangle \langle \Psi(0) | (W^{\dagger})^t | x \rangle$ $x = -t$ $= \sum \langle x | W^t | \psi_x \rangle |\chi\rangle \langle \chi| \langle \psi_x | (W^{\dagger})^t | x \rangle$ $x = -t$ $=\sum \tilde{K}_x(t)\rho_c(0)\tilde{K}_x^{\dagger}(t)$

we break down the evolution operator W in shift and coin operator

where $\tilde{K}_x(t) \equiv \langle x|W^t|\psi_x\rangle.$

$W = S(C \otimes I)$ $= [|\uparrow\rangle\langle\uparrow|\otimes T_{-} + |\downarrow\rangle\langle\downarrow|\otimes T_{+}][C\otimes 1]$ $= |\uparrow\rangle\langle\uparrow|C\otimes T_{-} + |\downarrow\rangle\langle\downarrow|C\otimes T_{+}$ $= C_{\uparrow} \otimes T_{-} + C_{\downarrow} \otimes T_{+}.$

Simulating the Neutrino Dance

arXiv:2305.13923v2 [quant-ph] 3 Jan 2024

Two-flavor neutrino oscillations

In this case, we need to mimic the dynamics of two Dirac particles and therefore the coin hilbert space is four dimensional space spanned by :

$$
\bigoplus\nolimits_{f=1,2}\{|f,\uparrow\rangle,|f,\downarrow\rangle\}.
$$

The evolution operator W has a block diagonal form

$$
W=\bigoplus_{f=1,2}W_f=S(B_2\otimes I)=\bigoplus_{f=1}^s
$$

 $B_f = \cos \theta_f |f,\uparrow\rangle \langle f,\uparrow| + \sin \theta_f (|f,\uparrow\rangle \langle f,\downarrow| - |f,\downarrow\rangle \langle f,\uparrow|)$ $+\cos\theta_{f}|f,\downarrow\rangle\langle f,\downarrow|.$

 $S_f = T_+ \otimes |f,\uparrow\rangle \langle f,\uparrow| + T_- \otimes |f,\downarrow\rangle \langle f,\downarrow|.$

 $\bigoplus_{f} S_f(B_f \otimes I)$ $=1,2$

16

14

$B \equiv C(0, \theta, 0, 3\pi/2)$

The mass eigenstates

$$
|\nu_1\rangle = \left[f(\theta_1, k) g(\theta_1, k) 0 0\right]^T \otimes
$$

$$
|\nu_2\rangle = \left[0 0 f(\theta_2, k) g(\theta_2, k)\right]^T \otimes
$$

The initial state |Ψ(0)⟩ **of the neutrino corresponding to α flavor using the mixing matrix acting on each sector**

$$
|\Psi(0)\rangle = |\nu_{\alpha}\rangle = \sum_{i=1,2}
$$

 $\tilde{\mathcal{K}}_x(t) = \bigoplus \langle x|W_f|\psi_x\rangle = \bigoplus \tilde{K}_x(\theta_f,t)$ $f = 1,2$ $f = 1,2$

where state |ψx⟩ **is momentum eigenstate k in position space representation.**

The reduced density matrix

$$
\rho_c(t)=\sum_x\tilde{\mathcal{K}}_x^{(2)}(t)\rho_c(0)
$$

The probability of the να [→] **νβ transition after ^a time ^t**

$P(\nu_{\alpha} \to \nu_{\beta}; t) = \text{Tr} [|\nu_{\beta}\rangle_c \langle \nu_{\beta}|_c \rho_c(t)]$

where

$|\nu_{\beta}\rangle_c = \sum U_{\beta i}|\nu_i\rangle_c$ $i = 1.2$

so that

 $|\nu_{\beta}\rangle_c\langle\nu_{\beta}|_c = \sum U_{\beta i}U_{\beta j}^*|\nu_i\rangle_c\langle\nu_j|_c$. 24 $i, j = 1, 2$

Transition probabilities **o f t w o f l a v o r n e u t r i n o oscillation obtained f r o m n u m e r i c a l s i m u l a t i o n u s i n g t h e Kraus operator a s s o c i a t e d w i t h t h e D T Q W w i t h i n i t i a l s t a t e | νµ**⟩**. The coin angles are θ1 = 0.001 rad., θ2 = 0.0986 rad., and the mixing angle ϕ = 0.698 rad. with k˜ = 0.05.**

The Project

 \odot

 $\boxed{\times}$

 \mathcal{G}

Hyper-Kamiokande

- Building on the success of Super-K
- Larger and more precise
- Study ν oscillations
- Determine the exact masses of ν

Unveiling the Future - Exploring the Potential **Novel approach to simulating neutrino oscillations by leveraging the power of DTQW.**

- **Open quantum walk framework unlocks efficient calculations** \bullet **of neutrino oscillations through reduced coin space dynamics.**
- **Emphasize the potential of this approach for studying neutrino oscillations.**

Conclusion

- **Extend the model to describe the dynamics of**
	- **multiple interacting neutrinos.**
- **Investigating the application to study more complex**
	- **neutrino interactions.**
	- **Exploring the potential for designing new neutrino**
		- **oscillation experiments.**
-

Future Directions

