Dark Higgs as Probe for Dark Matter

Authors

Faeq Abed Al Janabi INRC

Asmaa AlMellah IRSRA

International Symposium on High Energy Physics (ISHEP-2024)

Dark Matter

- While the Standard Model (SM) has been highly successful, it still fails to account for several key experimental observations. Among these unresolved questions is the existence of Dark Matter (DM), a form of matter that does not interact through electromagnetic or strong forces. Evidence supporting Dark Matter includes:
 - Galactic rotation curves: The rotational speeds at the outskirts of spiral galaxies cannot be attributed to visible matter alone.
 - Gravitational lensing: The bending of light around massive objects implies more mass than is visible.
 - Galaxy cluster dynamics: The radial velocities of galaxies and X-ray emissions from hot gas within clusters also indicate unseen mass.
 - Cosmic Microwave Background (CMB) anisotropies: Measurements suggest that Dark Matter constitutes approximately 85% of the total matter in the Universe.
- The absence of a Dark Matter candidate within the Standard Model is one of the primary drivers for exploring physics beyond the Standard Model (BSM).

Beyond Standard Model

- Several Beyond the Standard Model (BSM) theories offer candidates for dark matter or new particles, including:
 - •Two-Higgs Doublet Models
 - •Little Higgs Models
 - •Next-to-Minimal Supersymmetric Standard Model (NMSSM)

•Hidden Valleys Models

- In particular, Hidden Valley models propose a "hidden" or "dark" sector, comprising light particles that interact weakly with the Standard Model (SM) through a heavy mediator. This dark sector provides potential solutions for dark matter. The heavy mediator serves as a bridge between the SM and the hidden sector. In these models, a new scalar particle, which couples to the Higgs boson, could be long-lived.
- The model used in this study is the Hidden Abelian Higgs Model.

motivation for the FCC-ee

Based on :

- The luminosity for the Zh stage is $L = 5 ab^{-1}$.
- The estimated production of the collider at the different stages are
 - 5 ×10¹² Z bosons at 91 GeV,
 - 10⁸ W boson pairs at 160 GeV,
 - 10⁶ Higgs bosons at 240 GeV and
 - 10⁶ t⁻t pairs at 350 GeV.
- The high statistics increase the precision.
- Constraining the parameters could reveal deviations from the SM predictions, which in turn hints at new physics at higher energies than those currently reachable

Hidden Abelian Higgs Model

- A very simple extension of the standard model
- Adding a "dark" U(1) gauge group that is broken by a dark higgs vev.
- The "dark vector" ZD can then kinetically mix with the U(1)B gauge boson,
- The "dark higgs" S (or hS) can mix with the SM doublet higgs via the higgs portal |H|2|S|2 operator.
- This can induce a variety of higgs decays like:
 - $h \rightarrow Z ZD$ (if kinetic mixing dominates)
 - $h \rightarrow ZD ZD$ (if higgs mixing dominates)
 - h → S S (if higgs mixing dominates)
- This model has been studied in the literature, see e.g. Wells et al.

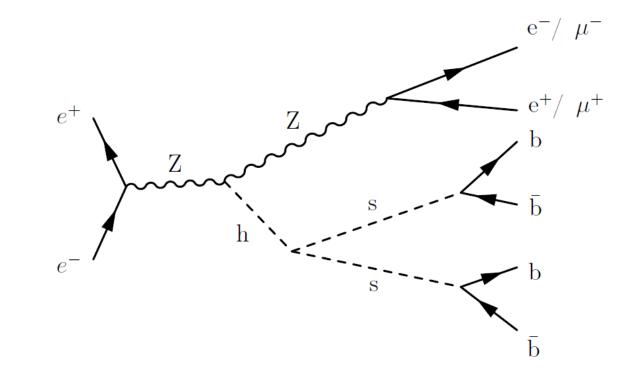
Lagrangian of The Model

• The lagrangian is
$$\mathcal{L}_{SM} \ni \underbrace{\frac{1}{2} \mu_S^2 S^2 - \frac{1}{4!} \lambda_s S^4}_{\text{scalar potential}} - \underbrace{\frac{1}{2} \kappa S^2 |H|^2}_{\text{portal term}} + \underbrace{\mu^2 |H|^2 - \lambda |H|^4}_{\text{Higgs potential}},$$
$$\mathcal{L}_{\Phi} = \frac{|D_{\mu} \Phi_{SM}|^2 + |D_{\mu} \Phi_{H}|^2 + \mu_{\Phi_{H}}^2 |\Phi_{H}|^2 + \mu_{\Phi_{SM}}^2 |\Phi_{SM}|^2}{-\lambda |\Phi_{SM}|^4 - \rho |\Phi_{H}|^4 - \kappa |\Phi_{SM}|^2 |\Phi_{H}|^2,}$$

• The partial decay width of the Higgs boson to the new scalars is given by

$$\Gamma(h \to ss) \approx \frac{\kappa^2 v_h^2}{32\pi m_h} \sqrt{1 - 4\frac{m_s^2}{m_h^2}},$$

• The decay of the scalar is determined by its partial decay width which is given at leading order by $= \sqrt{2\pi N_c m_s m_t^2} \left(1 - 4m_t^2 \right)^{3/2}$


$$\Gamma(s \to f\bar{f}) \approx \sin^2 \theta \frac{N_c}{8\pi} \frac{m_s m_f^2}{v_h^2} \left(1 - \frac{4m_f^2}{m_s^2}\right)^{-1},$$

Process of Dark Higgs from Higgs decays

• The complete production process:

 $e^+e^- \rightarrow Z h \text{ with } Z \rightarrow e^+e^- \text{ or } \mu^+\mu^- \text{ and } h \rightarrow hs hs \rightarrow bb^-$

• The Feynman diagram:

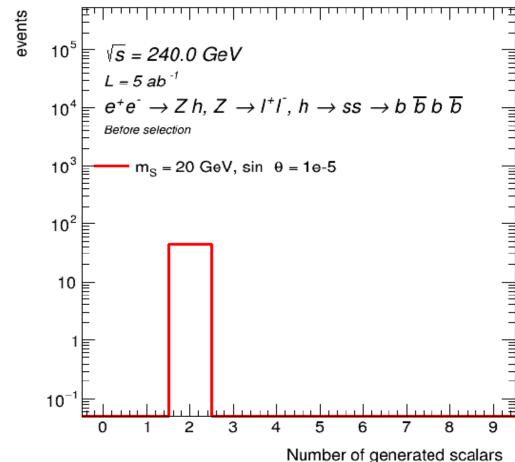
Setting the parameters of the process:

- the Hidden Abelian Higgs Model deals with SM, dark photon, and dark higgs.
- mass of the dark photon, m_{zD}:
- the kinetic mixing coupling constant of the dark photon, ϵ ,:
- the mass of the scalar, m_s: 20 GeV
- the coupling constant between the scalar and the Higgs boson, κ:
- The total decay width of the scalar for a b⁻b final state can be calculated as

$$\Gamma_s = \sin^2 \theta \frac{3}{0.9 \times 8\pi} \frac{m_s m_b^2}{v_h^2} \left(1 - \frac{4m_b^2}{m_s^2}\right)^{3/2}$$

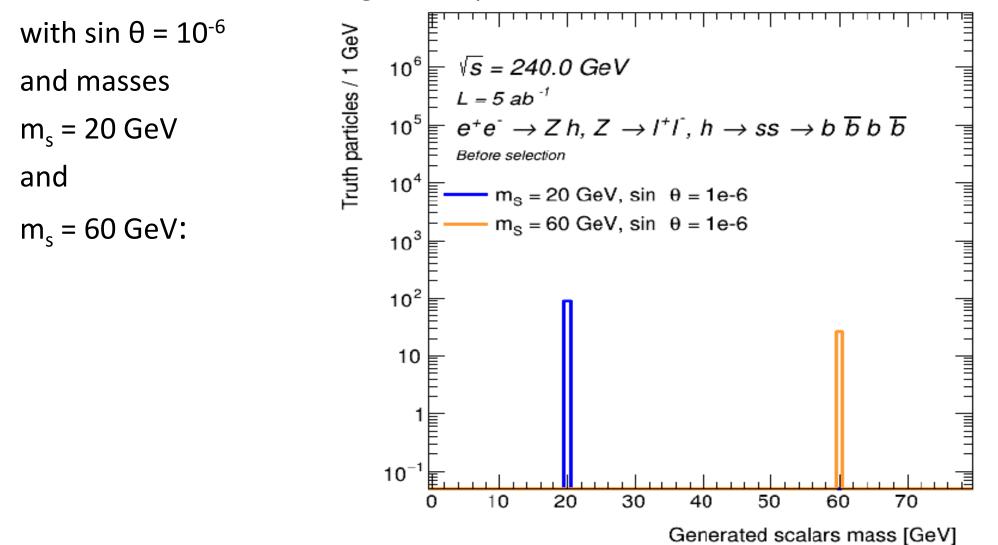
Setting of Parameters

- Branching ratio is $BR(h \rightarrow ss) \propto 10^{-4}$.
- Branching ratio $BR(s \rightarrow b^-b) = 0.9$,
- b quark mass is m_b = 4.2 GeV,
- Higgs vev vh = 246 GeV
- Number of colors $N_c = 3$.
- All signal samples are generated with 10,000 events,
- The total events generated is 360,000 events
- The mixing angles are sin $\theta = 10^{-5}$, 10^{-6} or 10^{-7} for each mass,
- Decay lengths of order 1 mm to 10 m.
- The scalar- Higgs coupling constant κ is set to $\kappa = 0.001$ for all events,
- This is lower than current constraints from searches at LHC.
- the center-of-mass energy, √s = 240 GeV

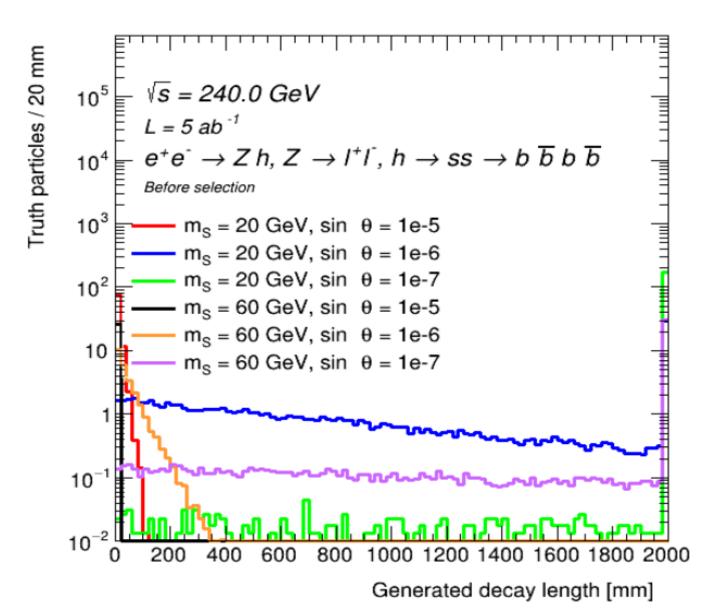

The generating value for simulation parameters:

- Considered generated values for
 - the scalar mass m_s
 - mixing angle $\sin\theta$,
 - scalar width $\Gamma_{\rm s}$

Mass of Scalar m_S [GeV]	$\begin{array}{c} \text{Mixing angle} \\ \sin \theta \end{array}$	Width of Scalar Γ_s [GeV]
20	1×10^{-5}	5.779×10^{-14}
20	1×10^{-6}	5.779×10^{-16}
20	1×10^{-7}	5.779×10^{-18}

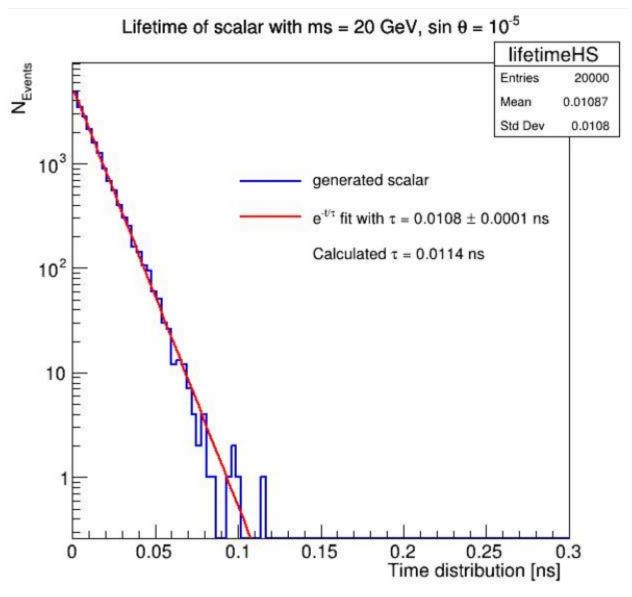

The result of mass and number of scalars

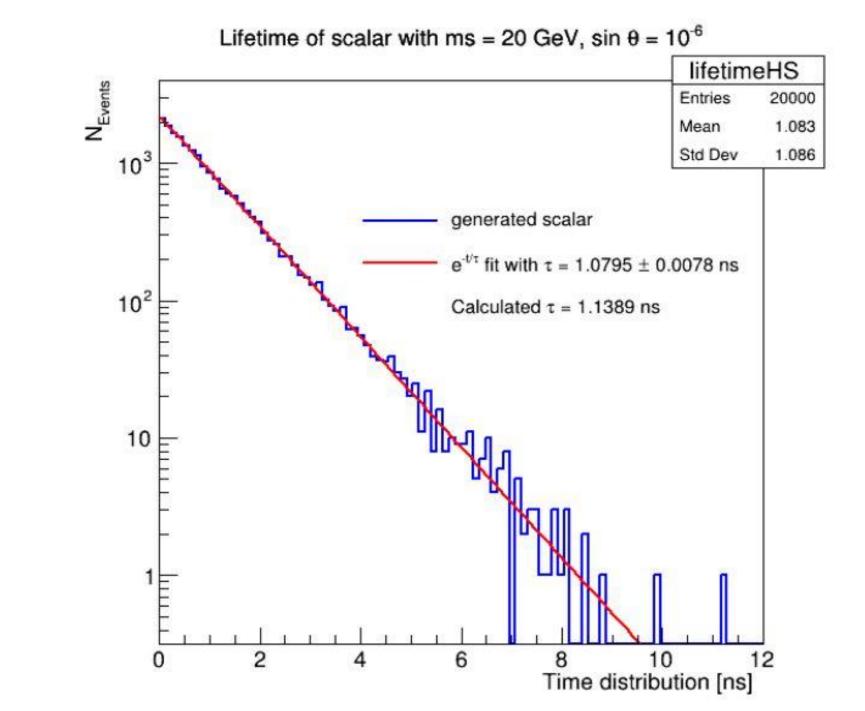
• The number of generated scalars in each event for the signal sample ms = 20 GeV, $\sin\theta = 10^{-5}$



Scalar Mass

• mass of the scalars for signal samples




Generated decay lengths

Lifetime of Dark Higgs


- Time distributions with exponential fit
 for each mixing angle
 sin θ =
- 10⁻⁵,
- 10⁻⁶,
- 10⁻⁷, with m_s = 20 GeV

• For $\theta = 10^{-6}$

Lifetime of scalar with ms = 20 GeV, sin θ = 10⁻⁷

• For $\theta = 10^{-7}$

