Projected Sensitivities on Triple Gauge Couplings at the FCC- μ p

Emre Gurkanli

Department of Physics Sinop University , The International Symposium of High Energy Physics (ISHEP-2024)

October 18, 2024

Outline

- Theoretical Background
- $\mu^- \gamma \to \mu^- \gamma Z \to \mu^- \gamma \nu_l \bar{\nu_l}$ process at FCC- μ p Collider
- A Cut-based Analysis
- Sensitivities on aNTGC
- Conclusions
- References

- Non-Abelian structure of Standard Model ⇒ couplings between gauge bosons.
- Triple couplings
 - $\Rightarrow \gamma WW$, ZWW in EW
 - \Rightarrow ZZZ, ZZ γ Z $\gamma\gamma$ don't exist at the tree level (No Dim-6 but Dim-8)
- Standard Model Nothing to expect
- New physics parametrized with effective Lagrangian.
 - \square enhancing existing couplings
 - ☐ introduce non-SM couplings

Main goals

- test the non-Abelian structure of the Standard Model.
 - exploring new physics beyond the Standard Model.

EFT approach

• adding high-dimensional operators that are invariant under $SU(2)_L \times U(1)_Y$ to the SM Lagrangian.

$$\mathcal{L}^{\mathsf{NTGC}} = \mathcal{L}_{\mathsf{SM}} + \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda^{4}} (\mathcal{O}_{i} + \mathcal{O}_{i}^{\dagger})$$

$$\mathcal{O}_{\widetilde{B}W} = iH^{\dagger}\widetilde{B}_{\sigma\rho}W^{\sigma\nu}\{D_{\nu},D^{\rho}\}H,$$

$$\mathcal{O}_{BW} = iH^{\dagger}B_{\sigma\rho}W^{\sigma\nu}\{D_{\nu}, D^{\rho}\}H,$$

$$\mathcal{O}_{WW} = iH^{\dagger}W_{\sigma\rho}W^{\sigma\nu}\{D_{\nu}, D^{\rho}\}H,$$

$$\mathcal{O}_{BB} = iH^{\dagger}B_{\sigma\rho}B^{\sigma\nu}\{D_{\nu},D^{\rho}\}H$$

where,

$$B_{\sigma\rho} = (\partial_{\sigma}B_{\rho} - \partial_{\rho}B_{\sigma}),$$

$$W_{\sigma\rho} = \sigma^i \left(\partial_\sigma W^i_\rho - \partial_\rho W^i_\sigma + g \epsilon_{ijk} W^j_\sigma W^k_\rho \right),$$

$$D_{\mu} \equiv \partial_{\mu} - i rac{g'}{2} B_{\mu} Y - i g_W W^i_{\mu} \sigma^i.$$

Photon Spectrum

$$f_{\gamma(x)} = \frac{\alpha}{\pi E_p} \{ [1 - x] [\varphi(\frac{Q_{max}^2}{Q_0^2}) - \varphi(\frac{Q_{min}^2}{Q_0^2})],$$

where the function φ is given as:

$$\begin{array}{l} \varphi(\theta) = (1+ky) \left[-\ln(1+\frac{1}{\theta}) + \sum_{s=1}^{3} \frac{1}{s(1+\theta)^{s}} \right] + \frac{y(1-l)}{4\theta(1+\theta)^{3}} + m(1+\frac{y}{4}) \left[\ln\left(\frac{1-l+\theta}{1+\theta}\right) + \sum_{s=1}^{3} \frac{l^{s}}{s(1+\theta)^{s}} \right]. \end{array}$$

Photon Spectrum

$$y=\frac{x^2}{(1-x)},$$

$$k = \frac{1 + \mu_p^2}{4} + \frac{4m_p^2}{Q_0^2} \approx 7.16,$$

$$I = 1 - \frac{4m_p^2}{Q_0^2} \approx -3.96,$$

Photon Spectrum

$$m = \frac{\mu_p^2 - 1}{b^4} \approx 0.028.$$

$$\sigma = \int f_{\gamma}(x) d\hat{\sigma} dE_1.$$

$$\sigma_{Tot} = \sigma_{SM}(\sqrt{s}) + \sigma_{(INT)} + \sigma_{(NP)}$$

$\mu^-\gamma \to \mu^-\gamma Z \to \mu^-\gamma \nu_l \bar{\nu}_l$ process at FCC- μ p Collider ($\sqrt{s}=24.5~{\rm TeV}$)

Feynman Diagrams

$\mu^-\gamma \to \mu^-\gamma Z \to \mu^-\gamma \nu_l \bar{\nu}_l$ process at FCC- μ p Collider ($\sqrt{s}=24.5~{\rm TeV}$)

Feynman Diagrams

$\mu^- \gamma \to \mu^- \gamma Z \to \mu^- \gamma \nu_l \bar{\nu}_l$ process at FCC- μ p Collider ($\sqrt{s}=24.5~{\rm TeV}$)

Feynman Diagrams

Object-I

Figure: The number of expected events as a function of $p_T^{I^-}$.

Object-II

Figure: The number of expected events as a function of p_T^{γ} .

Object-III

Figure: The number of expected events as a function of missing energy transverse \$\mathbb{E}_T\$.

Table: Particle-level selections cuts for the signals at the Muon Collider.

Kinematic cuts	C_{BB}/Λ^4 , C_{BW}/Λ^4 , $C_{\widetilde{B}W}/\Lambda^4$, C_{WW}/Λ^4	
Cut-I	$ ho_{T}^{\mu} > 70 \; GeV$	
Cut-II	$ ho_T^\gamma > 100{ m GeV}$	
Cut-III	I ∉ _T > 350	

Table: Number of events for $\mu^-\gamma \to \mu^-\gamma Z \to \mu^-\gamma \nu_l \bar{\nu}_l$ and SM background after cuts.

Kinematic cuts	C_{BB}/Λ^4	$C_{\widetilde{B}W}/\Lambda^4$	C_{BW}/Λ^4	C_{WW}/Λ^4	SM
Cut-0	1718	298	203	79	61
Cut-I	1681	257	163	38	21
Cut-II	795	122	74	14	6
Cut-III	790	117	69	9	1

$$\chi^{2} = \left(\frac{\sigma_{SM} - \sigma_{Tot}}{\sigma_{SM} \sqrt{(\delta_{st})^{2} + (\delta_{sys})^{2}}}\right)^{2}$$

$$\delta_{st} = \frac{1}{\sqrt{N_{SM}}}$$

$$N_{SM} = \mathcal{L}_{int} \times \sigma_{SM}$$

• Sensitivities are obtained at the 95% C.L.

Couplings	0%	5%	10%
$\mathcal{L}=5~ab^{-1}$			
C_{BB}/Λ^4	[-0.019; 0.023]	[-0.020; 0.024]	[-0.022; 0.026]
C_{BW}/Λ^4	[-0.066; 0.078]	[-0.069; 0.081]	[-0.077; 0.089]
$C_{\widetilde{B}W}/\Lambda^4$	[-0.058; 0.053]	[-0.060; 0.056]	[-0.066; 0.062]
C_{WW}/Λ^4	[-0.18; 0.20]	[-0.18; 0.21]	[-0.20; 0.23]

Figure: Cross-section for the process $\mu^- \gamma \to \mu^- \gamma Z \to \mu^- \gamma \nu_I \bar{\nu}_I$ in terms of the anomalous C_{BB}/Λ^4 , C_{BW}/Λ^4 , $C_{\widetilde{B}W}/\Lambda^4$, C_{WW}/Λ^4 couplings

Experimental Results on aNTGC

$$\begin{split} -1.1\,\text{TeV}^{-4} &< \frac{C_{\widetilde{B}W}}{\Lambda^4} < 1.1\,\text{TeV}^{-4}, \\ -2.3\,\text{TeV}^{-4} &< \frac{C_{WW}}{\Lambda^4} < 2.3\,\text{TeV}^{-4}, \\ -0.65\,\text{TeV}^{-4} &< \frac{C_{BW}}{\Lambda^4} < 0.64\,\text{TeV}^{-4}, \\ -0.24\,\text{TeV}^{-4} &< \frac{C_{BB}}{\Lambda^4} < 0.24\,\text{TeV}^{-4}. \end{split}$$

Figure: Comparison of the current experimental limits and projected sensitivity on the anomalous C_{BB}/Λ^4 and C_{BW}/Λ^4 .

Figure: Comparison of the current experimental limits and projected sensitivity on the anomalous $C_{\widetilde{B}W}/\Lambda^4$ and C_{WW}/Λ^4 .

Conclusions

- A study for the sensitivity on dim-8 aNTGC in a model independent way via the process $\mu^-\gamma \to \mu^-\gamma Z \to \mu^-\gamma \nu_l \bar{\nu}_l$ at FCC- μ p collider has been performed.
- Effective Field Theory(EFT) approach are used to parametrize the new physics effects with high dimensional operator.
- A cut-based method has been applied during the analysis.
- Sensitivities are composed under various systematic uncertainties.
- Obtained results are improved the latest experimental limits by a factor of 8 to 20 times.

References

- J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli and M. Zaro, JHEP 07, 079 (2014).
- M. Aaboud et al. [ATLAS Collaboration], JHEP 12, 010 (2018).
- M. Aaboud et al. [ATLAS Collaboration], JHEP 10, 127 (2019).
- S. Spor, E. Gurkanli and M. Köksal, *Nucl. Phys. B* **979**, 115785 (2022).

