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Introduction

Black holes are among the
most intriguing objects in
theoretical physics, espe-
cially due to their unique
properties in both

@ general relativity
@ quantum mechanics

Figure: Black Hole
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Introduction

Key Questions:

@ How does the GUP modify the Hawking temperature of
Kerr-like black holes?

@ Can the formation of remnants due to GUP corrections
help preserve quantum information?
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Introduction: Kerr-like Black Holes

Kerr-like rotating black holes are often studied in 3D gravity
within the framework of Topologically Massive Gravity (TMG).

Metric:

2 2 2 2
dsZ__<p po)dt2+ dp +r2<d¢—2p+3“BHdt)

r2 22 r2
2
r? = p? + 4wphp + 3wy + go

po and wpy are constants related to Kerr-like black hole
properties.
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Black Hole Parameters

Key Parameters of Kerr-like Black Holes:

@ Mass (M): Total mass of the black hole.

@ Event Horizons :

@ (po) : outer event horizons.
@ (—pp): inner event horizons.

@ Ergosphere: Region extends to infinity for wgy > 0.
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Spacetime Structure of Kerr-like Black Holes

Kerr-Like Black Hole -ourro

| NN . i
EVENT HORIZON ——

MELIKE
TLIKE CURVES ERGOSPHDRE ',

Figure: Spacetime structure and ergosphere
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Superradiance Condition

Superradiance is a process in which particles with angular
momentum interact with a rotating black hole, extracting energy
from it. This occurs when:

w < mQy

where w is the energy of the particle and Qy = WJm is the
angular velocity at the outer horizon.
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Superradiance Phenomenon

Superradiance
Kerr-Like Black Hole
e

——
Event Horione paiices
_anguliar moma‘lum angtar monet

energy

| I ting
or radidtion

Energy Extraction from m the's Rottional Energy

Figure: Superradiance process
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Superradiance Phenomenon

Superradiant Energy Extraction vs Particle Energy
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Figure: Superradiant Energy Extraction
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Superradiance Phenomenon

Particle Energy (omega) and Angular Velocity (Omega_H) vs Outer Horizon (rho_0)
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Figure: Particle’s energy and angular velocity vs pg
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Superradiance Phenomenon

@ The number of emitted particles is described by:

]
(N) o< eo—m) /T _ 1

@ As particle’s energy increases, number of emitted particles
decreases exponentially
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Superradiance Phenomenon

Hawking Temperature (T_H) vs Number of Particles Emitted ({N}))
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Figure: Number of emitted particles and Hawking radiation.
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Hawking Radiation process

@ Black holes emit radiation due
to quantum effects near the
event horizon.

@ Particle-antiparticle pairs are
created, with one particle
escaping as Hawking
radiation.

Fermion Tunneling from Kerr-like Black Holes
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Figure: Hawking
Radiation process
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Hawking Radiation and Black Hole Evaporation

@ This causes the black hole to lose mass over time, leading
to evaporation.

@ For large black holes, this process is slow, but as the black
hole becomes smaller, Hawking radiation becomes more
intense, potentially leading to complete evaporation.
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Fermion Tunneling Process

Fermion tunneling describes how particles with spin (fermions)
escape the black hole via quantum tunneling.

@ Fermions tunnel through the event horizon by solving the
Dirac equation in curved spacetime.

@ The tunneling probability is proportional to the imaginary
part of the action [

P x exp(—2Ilm(/))
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Dirac Equation and Tunneling

The Dirac equation in the Kerr-like black hole metric is:
i€V, —mp =0

The spinor field ¢ is expressed as an ansatz:

— A(t7pa¢)> —7/(fp,¢)
v <B(t,p,¢) e

A(t, p, ») and B(t, p, ¢) are the spinor components that depend
on spacetime coordinates.
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Surface gravity and Hawking Temperature

Solving this equation using the WKB approximation leads to the
calculation of Hawking temperature from tunneling.

K

TH — Z
For Kerr-like black holes, the surface gravity is given by:

Po
=524 3,2 >
Pg + 4wsHpPo + Swgy + P

This shows that the temperature depends on both mass and
angular momentum of the black hole.
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Hawking temperature via Fermion Tunneling

Classical Hawking Temperature vs Outer Horizon (rho_0)
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Figure: Hawking temperature Vs event horizon Kerr-like Black Hole
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Generalized Uncertainty Principle (GUP)

Generalized Uncertainty Principle (GUP):

@ GUP modifies the Heisenberg Uncertainty Principle by
introducing a minimal length scale AXmin.

@ This is particularly relevant for small black holes where
quantum gravity effects are significant.
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Concept of the Generalized Uncertainty Principle (GUP)

@ "GUP" is a modification of the Heisenberg Uncertainty
Principle due to quantum gravity effects.

@ GUP introduces a minimal length scale Axpin, which
affects the behavior of small black holes and high-energy
particles :

ah
AxAp>h|1+ )
P ( (Ap)?

@ « is a constant related to quantum gravity.

@ GUP implies that there is a minimal measurable length,
preventing arbitrarily small distances.
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Role of GUP in Black Hole Remnants
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Figure: Effect of GUP on Black Hole Evaporation and Remnant
Formation
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GUP and Hawking Radiation

The GUP-modified Hawking temperature is given by:

ah

As the black hole’s mass decreases, evaporation slows down,
potentially leading to the formation of a stable remnant.
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GUP and Hawking Radiation

Effect of GUP on Kerr-like Black Hole Evaporation (Small Omega)
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Figure: Hawking temperature vs Kerr-like black hole’s rotation
parameter (classical and GUP cases)
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GUP and Hawking Radiation

Hawking Temperature vs Outer Horizon Radius (rho_0) for Kerr-like BH
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Figure: Hawking temperature vs Kerr-like black hole’s event horizon
(classical and GUP cases)
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GUP and Hawking radiation

GUP correction becomes stronger as « increases, and the
Hawking temperature decreases more slowly for small pg

GUP-Corrected Hawking Temperature vs Outer Horizon Radius (rho_0)
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Figure: Effect of GUP on Black Hole radiation for several values of «
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Number of Emitted Particles: GUP case

The number of emitted particles for a Kerr-like black hole
depends on the temperature at the outer horizon (pg) and the
influence of the black hole’s angular momentum.

1
(NeuP) < —may
eTH(PﬁTg) 1
The GUP correction introduces a term that reduces the number

of emitted particles as the black hole approaches the remnant
phase.

27/34



Generalize
0000000

Number of Emitted Particles: Classical vs GUP

Number of Emitted Particles vs Black Hole Mass (Classical vs GUP)
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Figure: Number of Emitted Particles vs Black Hole Mass (Classical
vs GUP)
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Black Hole Evaporation and Remnants

@ Without GUP, combined with superradiance, Kerr-like black
hole evaporates completely via Hawking radiation.

@ However, GUP introduces a minimum size remnant,
preventing complete evaporation:

Miemnant ~ vV ah

@ This remnant mass represents the smallest possible stable
black hole, preserving quantum information and preventing
the total loss of entropy.
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Resolving the Information Paradox

GUP in Kerr-like black holes addresses the information
paradox:

@ Without GUP, Hawking radiation and superradiance cause
total evaporation and information loss.

@ With GUP, black holes stabilize as remnants, conserving
quantum information and entropy.

@ This aligns black hole thermodynamics with quantum
mechanics.
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Conclusion

@ Kerr-like black holes exhibit key quantum effects such as
superradiance and fermion tunneling, which are crucial
in their energy dissipation and evaporation process.

@ The tunneling mechanism provides insights into the
relationship between the event horizon’s surface gravity
and the black hole’s Hawking temperature.

@ Through tunneling, particles extract energy from the black
hole, accelerating its evaporation.
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Conclusion

@ GUP modifies this process, potentially halting full
evaporation and leaving a stable remnant.

@ GUP-induced remnants preserve both quantum
information and angular momentum, addressing the
long-standing black hole information paradox.

@ The remnants act as quantum information reservoirs,
offering a resolution to the paradox and bridging the gap
between quantum mechanics and general relativity in
black hole physics.
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@ Advanced numerical simulations of black hole remnants
formed through GUP, providing a clearer picture of their
stability and potential observational signatures.

@ Applications to other rotating systems and extending the
study to other rotating compact objects or exotic stars, to
examine whether GUP could influence their
thermodynamic properties or stability.
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