International Symposium on High Energy Physics ISHEP-2024 18-21 October 2024, ANTALYA-TURKEY

Exact solutions of a three-body problem of Calogero-Marchioro-Wolfes (CMW) type with Coulomb-like confinement in one dimension by the SUSY-QM method.

1ta: - 1/(X'+P'.) [a.a1] = 1

 $\hat{H} = 0^{t_a} + \frac{1}{2} = \frac{1}{2} (\hat{X} - i\hat{P}) (\hat{X} + i\hat{I})$

1/4n>= Vn+4 (4n+1)

aat 19 -1>=== (ata+1

 $\frac{1}{9} | \hat{P}_{1} \rangle + \lambda_{2} | \hat{P}_{2} \rangle \Rightarrow \lambda^{2} \langle \hat{Q}_{1} | + \lambda_{2} | \hat{P}_{2} \rangle \Rightarrow \lambda^{2} \langle \hat{Q}_{1} | + \lambda_{2} | \hat{P}_{2} \rangle \Rightarrow L_{2} \langle \hat{P}_{1} \rangle = L_{2} \langle \hat{P}_{1} \rangle = L_{2} \langle \hat{P}_{2} \rangle = L_{2} \langle \hat{P}_{1} \rangle = L_{2} \langle \hat{P}_{2} \rangle = L_{2}$

Supervisor: PR bachkhaznadji, A

Laboratoire de Physique Theorique, Universite Freres Mentouri, Constantine1, Constantine, Algeria The correct equation of motion that work for small particles has been proposed by Erwin Schrödinger.

 $\hat{H}\Psi = E\Psi$

hrödinger equation

Jutline:

* Introduction

ect equation of motion that work f rticles has been proposed by Erw

 $\Psi = E\Psi$

 I. The generalized CMW problem
 II. The mathematical formalism of SUSY-QM method.
 III. The exact solution of the CMW problem by SUSY-QM method.
 Conclusion

Schrödinger equation

correct equation of motion that all particles has been proposed prodinger.

 $\hat{H}\Psi = E\Psi$

be correct equation of motion that work for mall particles has been proposed by Erwin chrödinger.

 $\hat{H}\Psi = E\Psi$

There exists a very limited nbr of exactly solvable many-body systems, even in 1 dim space.

Introduction

0000

00 52

000

The exact solvability of a quantum problem is related to some kind of intrinsic properties of the problem, such as hidden symmetries.

iz A survey of many quantum integrable systems was done by Olshanetky and Perelomov.

The Calogero model belongs to the set of the integrable problems that a was studied in numerous works with different extensions.

Sekhane Ibtissem

X=Vmw X

[x.p]

ata:

Ĥ.

ISHEP-2024

18-21 October 2024, ANTALYA-TUKKEY

GUL

In particles physics, Susy is a symmetry between bosons and fermions. "it is the invariance of system under the exchange of besons into fermions and vice-versa.

PARTICLE

Sekhane Ibtissem

ISHEP-2024

Concept of Concept of Concept

Susy predict to the existence of superpartners to all base nature constituents.

> PERPERSYMMETRIC PARTNER PARTICLE

> > **Heschron**

CONTRACT A DESCRIPTION OF

periode en

Sekhane Ibtissem

ISHEP-2024

There has so far been no experimental evidence of Susy being realized in nature!! which implies that Susy must be spontaneously broken.

Sekhane Ibtissem

ISHEP-2024

The difficulty of understand this unusual summetry in QFT implies that Susy must firstly studied in the simplist case i,e in the case of non-relativistic QM

ISHEP-2024

The Sch equation corresponds to the above Hamiltonian, in the sphrical coords:

$$\begin{aligned}
& H_{r} \\
&$$

L

1-1

HI ~

Ĥ

a

ISHEP-2024

18-21 October 2024, ANTALYA-TURKEY

.2

$$\begin{split} \hat{\chi}_{z} \langle \frac{m}{m} \chi ; \hat{f}_{z} \neq \frac{m}{m}$$

ISHEP-2024

1. 1005 4 Shape invariance property. The population $\hat{X} = \sqrt{\frac{m\omega}{m}}$ If the superpotential of the problem obeys a further de [x,p]=i H=twH dé constraint « Shape Invariance», then for either H we can derive all the eigenvalues and step-by-step construct all the Eigen functions, i.e the problem become « Exactly Solvable ». A superpartners potentials are said to be shape invariant (SIP) if they satisfy: $V_+(x, a_0) = V_-(x, a_1) + \underline{\mathbf{R}(a_1)}$ with: $a_1 = f(a_0)$ With the eigenenergies of $V_{-}(x, a_{1})$: $E_{n}^{-} = \sum_{k=1}^{n} R(a_{k})$ a142>= Vn 19n $a_k = f^k(a_0)$ $\Delta t' = \Delta \gamma = \left(1 - \frac{vt}{ct}\right)^{t} \Delta t \quad t \in \left(\frac{1 - p}{1 - p}\right)$ $E_{n=0}^{-}=0$ a/4n>= = + aat 14n-2>= == [ata+1] [9-2]

Sekhane Ibtissem

ISHEP-2024

Resolution of the angular equation of the polar angle (
$$\varphi$$
);
We suppose the superpotential: W(A, B, φ) = A. tan(3 φ) + B. cot(3 φ)
We calcul the superpartners potentials:
 $v_{\pm}(A, B, \varphi) = \frac{A.(A \pm 3)}{\cos^2 3\varphi} + \frac{B(B \mp 3)}{\sin^2 3\varphi} - (A - B)^2$
Verification of the shape invariance property of the superpartners pots;
 $v_{\pm}(A, B, \varphi) - v_{-}(A + 3, B - 3, \varphi) = 12.[a_0 - b_0 + 3] \equiv R(a_1, b_1)$
With : $a_0 = A$; $a_1 = A + 3$, $b_0 = B$; $b_1 = B - 3$
So: $v_{\pm}((A, B, \varphi)$ are Shape invariant potentials.
(W)x
H = a
H = a
H = a
 $A = \frac{n}{k=1} R(a_k) = 12n(a_0 - b_0 + 3n)$; $n = 0, 1, 2 \dots, E_{n=0}^{-} = 0$
($\frac{(+p)}{2}$)

L

a

ISHEP-2024

[0000]X= <u>Rewrite the and pot included in the polar diff eat according to the superpartner pot:</u> $V(\lambda, f, \varphi) = v_{-}(A, B, \varphi) + (A - B)^{2}$ x.P with: $\frac{9\lambda}{2} = A(A-3);$ $\frac{9f}{2} = B(B+3)$ <u>Calcul of the spectrum of the polar diff eqt according to the spectrum of the</u> <u>superpartners pot</u>: $B_n = E_n^- + (A - B)^2 = [(A - B) + 6n]^2$ To ensure the positivity of E_n^- ; we take only the positive value of A, and negative value of B. $B_n = 9.(2n + a + b + 1)^2$ <u>As a result:</u> $a = \frac{1}{2}\sqrt{1+2\lambda}$; $b = \frac{1}{2}\sqrt{1+2f}$ where: $\lambda > -rac{1}{2}$; $f \ge -rac{1}{2}$ with:

Sekhane Ibtissem

Vn

ISHEP-2024

1. 1005 (4) $\hat{X} = \sqrt{\frac{m\alpha}{m}}$ Resolution of the angular equation of the azimuthal angle (θ) : [x,p]=0 $\hat{H} \not\leftarrow We \text{ suppose the superpotential}$: $W(A, \theta) = A. cot\theta$ We calcul the superpartners potentials: $v_{\pm} = \frac{A.(A \mp 1)}{\sin^2 \theta} - A^2$ Verification of the shape invariance property of the superpartners pots: $v_+(\theta, A) - v_-(\theta, A - 1) = -2a_0 + 1 \equiv R(a_1)$ With : $a_0 = A$; $a_1 = A-1$ So: $v_+(\theta, A)$ are Shape invariant potentials. $\hat{\mu} = \sigma \frac{Calcul}{\Delta he} \frac{A}{A}$ spectrum of $v_{-}(\theta, A)$; after conclude the recurrence relation of the shape invariance property $R(a_l) = -2a_0 + (2l - 1);$ where: $a_0 = A$, $a_1 = A - 1$ atlyn $E_l^- = \sum R(a_k) = l(l-2a_0); \ l = 0, 1, 2 \dots E_{l=0}^- = 0$ te alth a/4n>===aat/4n=>====(=a+1)/2n=1> $\Delta t = \Delta \gamma = (1 - \frac{v_{-}}{v_{-}})^{c} \Delta t$ (K)= - = - = - Iluil

Sekhane Ibtissem

ISHEP-2024

 \hat{X} Rewrite the ang pot included in the azimuthal diff eqt according to the superpartner pot:

$$V(\boldsymbol{b}_n, \boldsymbol{\theta}) = V_-(\boldsymbol{A}, \boldsymbol{\theta}) + \boldsymbol{A}^2$$

with: $\mathbf{b}_n = \mathbf{A}(\mathbf{A} + \mathbf{1}) + \frac{1}{4}$

Calcul of the spectrum of the azimuthal diff eqt according to the spectrum of the superpartners pot: $D_l = E_l^- + A^2 = (l - A)^2$

To ensure the positivty of E_l^- ; we take only the negative value of A.

$$D_{n,l} = \left(l + \frac{1}{2} + b_n\right)^2$$
, $l, n = 0, 1, 2 \dots$

With:
$$b_n = \sqrt{B_n} = 3(2n + a + b + 1), a = \frac{1}{2}\sqrt{1 + 2\lambda}$$
; $\lambda > -\frac{1}{2};$
 $b = \frac{1}{2}\sqrt{1 + 2f}; f > -\frac{1}{2}$

Sekhane Ibtissem

<u>As a result:</u>

Ĥ

a=

ISHEP-2024

18-21 October 2024, ANTALYA-TURKEY

(1. ecos (4)

<u>Resolution of the radial equation r:</u>

av

[x,p]=(We suppose the superpotential: $W(r, A, C) = \frac{A}{2C} - \frac{C}{r}$ ile > & we calcul the superpartners potentials: $v_{\pm} = -\frac{A}{r} + \frac{C(C \pm 1)}{r^2} + \frac{A^2}{4C^2}$ a=1 (x-Verification of the shape invariance property of the superpartners pots: $v_{+}(r, A, c) - v_{-}(r, A, c-1) = \frac{A^{2}}{4} \left(\frac{1}{a_{0}^{2}} - \frac{1}{a_{1}^{2}} \right) \equiv R(a_{1})$ $i_{l} \in \mathcal{N}$ with : $a_0 = c$; $a_1 = c-1$ So: $v_+(r, A, c)$ are Shape invariant potentials. H = ac Calcul the spectrum of $v_{-}(r, A, c)$: after conclude the recurrence relation of the shape invariance property $R(a_k) = \frac{A^2}{4} \left(\frac{1}{a_{k-1}^2} - \frac{1}{a_k^2}\right)$ where: $a_0 = c$, $a_1 = c - 1$ at 14,> $E_{k}^{-}(A,C) = \sum_{i=1}^{n} R(a_{i}) = \frac{A^{2}}{4} \cdot \left(\frac{1}{C^{2}} - \frac{1}{(C+k)^{2}}\right); \quad k = 0, 1, 2 \dots E_{k=0}^{-} = 0$ a14.) a14.)

Sekhane Ibtissem

X=Vmw

ISHEP-2024

18-21 October 2024, ANTALYA-TURKEY

ecos (9)

(e')"

-Mve .

che

告

Rewrite the radial pot included in the radial diff eqt according to the superpartner
pot:

$$V(r, \alpha, \mu + D_{n,l}) = v_{-}(r, A, C) - \frac{A^2}{4C^2}$$
with: $\alpha = A$; $\mu + D_{n,l} - \frac{1}{4} = C(C-1)$
Calculte the spectrum of the radial diff eqt according to the spectrum of the
superpartners pot; $E = E_k^-(A, C) - \frac{A^2}{4C^2} = -\frac{A^2}{4(C+k)^2}$
To ensure the positivity of E_k^- ; we take only the positive value of C.
As a result:

$$E_{n,l,k} = -\frac{A^2}{4(\frac{1}{2}+c_{n,l}+k)^2}, \quad n,l,k = 0, 1, 2 \dots$$
With: $c_{n,l} = \sqrt{\mu + D_{n,l}}, \qquad \mu + D_{n,l} > 0$

v

[x

H

a

0

ata

ISHEP-2024

×√mw/λ	Results	d'w 1 dzr
ê]= <i>ℓ H</i>	As resume: The eigenvalues of the Hamiltonian of the generalized CMW	r' dqu
(X')	problem 'for binding states' are obtained by:	P Ju
q:>=E, }	$\boldsymbol{E}_{\boldsymbol{n},\boldsymbol{l},\boldsymbol{k}} = -\frac{\alpha^2}{\left(1+2\alpha+k\right)^2}$	U Gri
1 (X+1)	$c_n = \sqrt{\mu + D_n \mu}$	-**= J*
·示(x-)	$\begin{pmatrix} n & \sqrt{1} & 1 \\ 1 & \sqrt{2} \end{pmatrix}^2$. (vk)×
	$\boldsymbol{D}_{\boldsymbol{n},\boldsymbol{l}} = \left(\boldsymbol{l} + \frac{1}{2} + \boldsymbol{b}_{\boldsymbol{n}}\right)$	-V'k')"
= 0ta +	$b_n = 3.(2n + a + b + 1)$	1=11v · 9 ··
= aa+	$a = \frac{1}{2}\sqrt{1+2\lambda}$; $b = \frac{1}{2}\sqrt{1+2f}$	1'-() 12
+ 4n>=	$\lambda > -rac{1}{2}$; $f > -rac{1}{2}$	- che
14.7=	$\forall (n, l, k) \geq 0 : \mu \geq -\frac{49}{-1}$	(A-P)'A
(14,)==	4	2 (179)

L____

Ŷ

[x.

Ĥ

a

0

ata:

ISHEP-2024

The entire Spectrum Can be determined Algebraically, without ever referring to underlying differential equations, through the mathematical formalism of SUSY-QM and Shape Invariance property.

Conclusion

The Shape Invariance property is sufficient condition to ensure the exact solvability of the problem.

So we can say that: SUSYQM and shape invariance provide an excellent formalism to determine the entire spectrum of solvable quantum systems through a step-by-step algebraic procedure, without any need to solve a differential equation.

11で)を

1- 1005 (4)

di

Sekhane Ibtissem

a14.)==aa111.

[x,p]=(

Ĥ=+(X

Ĥ14:>= E.1.

 $a = \frac{1}{\sqrt{r}} (\dot{x} +)$

at: 二(x-

ata: - (x' + P

 $\hat{H} = O^{\dagger}a$

 $\hat{H} = aa^{T}$

at 14,>=

a14.7=

00 015

ISHEP-2024

0000 (+ · · cos () 0500 $\hat{X} = \sqrt{\frac{m\omega}{n}} X ; \hat{P} = \frac{1}{\sqrt{n+\omega}} \hat{P}$ Ventso o ···· 00 50 1 24 1 dr d'w (0)= 00 0 15 ... (4')= $[\hat{x}, \hat{p}] = i \quad H = \hbar \omega \hat{H}$ V' dec 000005 -w J'd'w $\hat{H} = \frac{1}{2} (\hat{X}^{c_1} \hat{P}^{c_1})$ do Ausia (0) = Ausia (0) - Aura (0) d2 P 002 Ĥ|4:>=E,14:> den-w= HOUN The same prb is treated by another algebraic $a = \frac{1}{\sqrt{2}} (\dot{\chi}_{+1} \hat{\rho})$ approach which is SGA method, where it based also $a^{+}=\frac{\lambda}{\sqrt{n}}(\dot{\mathbf{x}}_{-},\dot{\mathbf{p}})$ on the SI condition to generate the algebra and the $\ell' = \frac{\ell \cdot (\nu k') \kappa}{(\mu - \nu' / \epsilon')^{n_{\pi}}}$ spectrum of the prb, and we find the same results. ata: 2(X'+P'.) $(\lambda - \mathbf{V}' k')'''$ which confirmed once again that SI condition is a H = aa = this work is the exact solvability. E= Mc' = = Mv , This work is represented as poster in the poster E= (prc"+ 11'er) 2 R= Asia (wel 1 = Aros (wel) at 14 = Vn+4 19 sessions. $i\frac{\partial}{\partial t}\psi(\vec{r},t) = -\frac{\hbar^2}{2m}\Delta\Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t)$ $= Mc^{2} \left[1 + \left(\frac{P^{2}}{H^{2}c^{2}} \right) \right]^{\frac{1}{2}} \qquad \sum_{i=1}^{n} E_{i} = c^{4}$ $\Delta = \frac{\partial^{2} \partial z^{2}}{\partial z^{2}} \frac{\partial^{2} / \partial y^{2}}{\partial y^{2}} + \frac{\partial^{2} \partial z^{2}}{\partial z^{2}} \int |\Psi(\vec{r}; t)|^{2} \partial \vec{r} = \frac{1}{2} M \times \left(\frac{1}{2} M \left[a_{0} \left[1 - a_{0} \left(a_{0} t + q \right) \right] \right] \right)$ al 9. >= Vn 19 n. 1> $\frac{1}{2\pi/\omega} = \frac{1}{2\pi/\omega} \left(\frac{1}{2\pi/\omega} + \frac{$ $\Delta t' = \Delta \gamma = \left(1 - \frac{v\epsilon}{c^*} \right)^{t} \Delta t \quad \xi = \xi \left(\frac{1 - P}{1 - p} \right)^{t}$ a14n>===aat14n-1>============>

Sekhane Ibtissem

