ISHEP-2024

Oct 18 – 21, 2024

Antalya-Turkey

On the connection between mixing matrices in the quark and neutrino sectors

Davide Meloni Dipartimento di Matematica e Fisica, Roma Tre

The Standard Model of Particle Physics

S.King, talk at Bethe Forum on Modular Flavor Symmetries

The Flavor Problem

$$m_d \ll m_s \ll m_b, \ \frac{m_d}{m_s} = 5.02 \times 10^{-2},$$

$$m_u \ll m_c \ll m_t, \ \frac{m_u}{m_c} = 1.7 \times 10^{-3},$$

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};$$

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};$$

The Flavor Problem

$$m_d \ll m_s \ll m_b, \ \frac{m_d}{m_s} = 5.02 \times 10^{-2},$$

 $m_u \ll m_c \ll m_t, \ \frac{m_u}{m_c} = 1.7 \times 10^{-3},$

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18$$
 GeV;

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};$$

Fermion mixing

 ν_1

 ν_e

 u_{μ}

 ν

The Flavor Problem

 ν_e

 u_{μ}

 $\boldsymbol{\nu}$

$$m_d \ll m_s \ll m_b, \ rac{m_d}{m_s} = 5.02 imes 10^{-2},$$

 $m_u \ll m_c \ll m_t, \ rac{m_u}{m_c} = 1.7 imes 10^{-3},$

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18$$
 GeV;

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \ \text{GeV};$$

Fermion mixing

Suggested solutions

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$$

Too many O(1) coefficients

Works better for small mixing: good for quarks, no for neutrinos

Suggested solutions

* Hierarchical Pattern

Froggatt-Nielsen mechanism

 $L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$

Too many O(1) coefficients

Works better for small mixing: good for quarks, no for neutrinos * mixing angles

elegant explanation: non-Abelian discrete flavour symmetries

Complicated scalar sector. Good for neutrinos, not for quarks

Suggested solutions

* Hierarchical Pattern

Froggatt-Nielsen mechanism

 $L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$

Too many O(1) coefficients

Works better for small mixing: good for quarks, no for neutrinos * mixing angles

elegant explanation: non-Abelian discrete flavour symmetries

Complicated scalar sector. Good for neutrinos, not for quarks

Mixings in the lepton and hadron sector are unrelated?

Quark-Lepton complementarity

Quark-Lepton complementarity

- appealing from a theoretical and phenomenological point of view
- no clue on which kind of symmetry could be responsible for them

Quark-Lepton complementarity

- appealing from a theoretical and phenomenological point of view
- no clue on which kind of symmetry could be responsible for them

we need to replace the bad relation with a promising one:

 $\theta_{13}^{PMNS} = O(1) \cdot \theta_{12}^{CKM}$

same order of magnitude

we need to replace the bad relation with a promising one:

$$\theta_{13}^{PMNS} = O(1) \cdot \theta_{12}^{CKM} \qquad \begin{array}{c} \text{same order of} \\ \text{magnitude} \end{array}$$

Flavor symmetries

neutrino mass matrix: $\begin{pmatrix} x & y & y \\ y & z & x-z \\ y & x-z & z \end{pmatrix} \xrightarrow{\text{diagonalized by}} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} = U_v$ $\theta_{13}^{PMNS} = 0 \qquad \theta_{12}^{PMNS} = 45^o \qquad \theta_{23}^{PMNS} = 45^o$ good starting point **Flavor symmetries**

Altarelli et al., 0903.1940

1

Corrections are needed from charged lepton diagonalization

$$U^{PMNS} = U_{cl}^{+} \cdot U_{v} \qquad U_{cl} \sim \begin{pmatrix} 1 & \lambda_{c} & \lambda_{c} \\ \lambda_{c} & 1 & 0 \\ \lambda_{c} & 0 & 1 \end{pmatrix}$$

introduced by hand (me/mu ~ λ_{c}^{2})
 $\theta_{12} = \frac{1}{2} - O(\lambda_{c})$

good results:

$$\begin{cases} \sin^2 \theta_{12} = \frac{1}{2} - O\left(\lambda_C\right) \\ \sin^2 \theta_{23} = \frac{1}{2} \\ \sin \theta_{13} = \frac{1}{\sqrt{2}} O\left(\lambda_C\right) \end{cases}$$

$$\left[\theta_{13}^{PMNS}=O(1)\cdot\theta_{12}^{CKM}\right]$$

<u>GUT: simple example from SU(5)</u>

Let us take the electron and down quark relation:

$$m_e = m_D^T$$

$$U^{PMNS} = U_{cl}^{+} \cdot U_{v} \qquad V^{CKM} = U_{u}^{+} \cdot U_{d}$$

<u>GUT: simple example from SU(5)</u>

Let us take the electron and down quark relation:

$$m_e = m_D^T$$

$$U^{PMNS} = U_{cl}^{+} \cdot U_{v} \qquad V^{CKM} = U_{u}^{+} \cdot U_{d}$$

Let us diagonalize the matrices:

relations involve <u>unobservable</u> right-handed rotations

Our approach

<u>Our point of view:</u> assume a dependence of neutrino mixing on the CKM

$$U^{PMNS} = V_{CKM}^* \cdot T^*$$

 $T = U_{23}(\widetilde{\theta}_{23}) U_{13}(\widetilde{\theta}_{13}) U_{12}(\widetilde{\theta}_{12})$

Our approach

<u>Our point of view:</u> assume a dependence of neutrino mixing on the CKM

$$U^{PMNS} = V_{CKM}^* \cdot T^*$$

$$T = U_{23}(\widetilde{\theta}_{23}) U_{13}(\widetilde{\theta}_{13}) U_{12}(\widetilde{\theta}_{12})$$

Strategy:

- take T as the well know leading order results
- correct them to match the experimental values of angles and phases
- check for neutrino mass predictions as well

Parameter	Best-fit value and 1σ range
$r\equiv \Delta m_{\rm sol}^2/ \Delta m_{\rm atm}^2 $	0.0295 ± 0.0008
$\tan(\theta_{12})$	0.666 ± 0.019
$\sin(\theta_{13})$	0.149 ± 0.002
$\tan(\theta_{23})$	0.912 ± 0.035
$J_{ m CP}$	-0.027 ± 0.010

 $J_{CP} = \text{Im} \left[(U_{PMNS})_{11} (U_{PMNS})_{12}^* (U_{PMNS})_{21}^* (U_{PMNS})_{22} \right]$

Is the ansatz successfull?

No CKM corrections

$$U^{PMNS} = V^*_{CKM} \cdot T^*$$
$$T = U_{23}(\widetilde{\theta}_{23}) U_{13}(\widetilde{\theta}_{13}) U_{12}(\widetilde{\theta}_{12})$$

No CKM corrections

$$U^{PMNS} = V^*_{CKM} \cdot T^*$$
$$T = U_{23}(\widetilde{\theta}_{23}) U_{13}(\widetilde{\theta}_{13}) U_{12}(\widetilde{\theta}_{12})$$

no CKM corrections

 $\sin(\theta_{13})=0 \qquad \sin(\theta_{13})=0 \qquad \sin(\theta_{13})=0$ $\tan(\theta_{23})=1 \qquad \tan(\theta_{23})=1 \qquad \tan(\theta_{23})=1$ $\tan(\theta_{12})=1 \qquad \tan(\theta_{12})=\frac{1}{\sqrt{2}} \qquad \tan(\theta_{12})=\frac{2\sqrt{5}}{\sqrt{5+\sqrt{5}}}$

no CP violation !

$$U^{PMNS} = V_{CKM}^* \cdot T^*$$

0

ALL

after CKM corrections

Т	$\sin(heta_{13})$	$\tan(\theta_{12})$	$\tan(\theta_{23})$	$J_{ m CP}$
U_{TBM}	$\frac{\lambda}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} + \frac{3\lambda}{2\sqrt{2}}$	1	$-\frac{1}{6}A\eta\lambda^3$
U_{BM}	$\frac{\lambda}{\sqrt{2}}$	$1 - \sqrt{2\lambda}$	1	$\frac{1}{4\sqrt{2}}A\eta\lambda^3$
U_{GR}	$\frac{\lambda}{\sqrt{2}}$	$\frac{2\sqrt{5}}{5+\sqrt{5}} + \frac{5\sqrt{2}}{5+\sqrt{5}}\lambda$	1	$-\frac{1}{2\sqrt{10}}A\eta\lambda^3$
		ϵ	$P_{13}^{PMNS} = 0$	$O(1) \cdot \theta_{12}^{CKM}$

$$U^{PMNS} = V_{CKM}^* \cdot T^*$$

maximal atmospheric mixing

$$U^{PMNS} = V_{CKM}^* \cdot T^*$$

good for BM only

too small CP violation

 χ^2 4 parameter-fit of u, ω and z: all patterns agree with experiments \rightarrow our ansatz $U^{PMNS} = V^*_{CKM} \cdot T^*$ is phenomenological viable

	Pattern	$\operatorname{Re}\left(u ight)$	$\operatorname{Im}\left(u ight)$	ω	z	
$\chi^2 \sim 0$	TBM	-0.27	0.57	-0.27	-0.50	
	BM	-0.27	0.57	-0.27	0.08	
	\mathbf{GR}	-0.27	0.57	-0.27	-0.73	
		CP violation		atmospheric angle	solar angle	

Backup slides

Neutrino masses

$$U^{PMNS} = V_{CKM}^* \cdot T^*$$

$$T_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

1 sigma experimental band

after CKM corrections

T	$\sin(heta_{13})$	$\tan(\theta_{12})$	$\tan(\theta_{23})$	$J_{\rm CP}$
U_{TBM}	$\frac{\lambda}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} + \frac{3\lambda}{2\sqrt{2}}$	1	$-\frac{1}{6}A\eta\lambda^3$
U_{BM}	$\frac{\lambda}{\sqrt{2}}$	$1 - \sqrt{2\lambda}$	1	$\frac{1}{4\sqrt{2}}A\eta\lambda^3$
U_{GR}	$\frac{\lambda}{\sqrt{2}}$	$\tfrac{2\sqrt{5}}{5+\sqrt{5}} + \tfrac{5\sqrt{2}}{5+\sqrt{5}}\lambda$	1	$-\frac{1}{2\sqrt{10}}A\eta\lambda^3$

 $\theta_{13}^{PMNS} = O(1) \cdot \theta_{12}^{CKM}$

$$0 \qquad \qquad 0.5 \sin(\theta_{13})$$