N2HDM framework

Constraints 000000 Results 00000000 Conclusion 00

The Next-Two-Higgs-Doublet Model confronts the Naturalness Problem

Bassim Taki

Theoretical and High Energy Physics Laboratory, Faculty of Science, Ibn Zohr University

In collaboration with: A.Arhrib, R.Benbrik, L.Rahili, S.Semlali Based on: Eur.Phys.J.C 84 (2024) 8, 799

The International Symposium of High Energy Physics (ISHEP-2024)

October 20, 2024

Bassim Taki

The Next-Two-Higgs-Doublet Model confronts the Naturalness Problem

イロト イポト イヨト イヨト

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion

1 Introduction

- **2** Motivation and Objectives
- **3** N2HDM framework
- **4** Constraints

5 Results

в

500

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
•0					

1 Introduction

- **2** Motivation and Objectives
- **3** N2HDM framework
- **4** Constraints

5 Results

6 Conclusion

< □ > < 同

ъ

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
⊙●		00000	000000	00000000	00

• The Standard Model (SM) of particle physics has successfully described fundamental interactions, culminating in the discovery of the Higgs boson at 125 GeV in 2012. However, despite its successes, the SM leaves several questions unanswered.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
⊙●		00000	000000	0000000	00

- The Standard Model (SM) of particle physics has successfully described fundamental interactions, culminating in the discovery of the Higgs boson at 125 GeV in 2012. However, despite its successes, the SM leaves several questions unanswered.
- Key Points:
 - The mass of the Higgs boson is **unnaturally fine-tuned**, leading to what is known as the **naturalness problem**.

- The Standard Model (SM) of particle physics has successfully described fundamental interactions, culminating in the discovery of the Higgs boson at 125 GeV in 2012. However, despite its successes, the SM leaves several questions unanswered.
- Key Points:
 - The mass of the Higgs boson is **unnaturally fine-tuned**, leading to what is known as the **naturalness problem**.
 - Radiative corrections to the Higgs mass introduce large quadratic divergences, which suggest that new physics beyond the SM is necessary to stabilize the Higgs boson mass.

▶ 4 3

▶ ▲ @

4/27

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
	••				

1 Introduction

2 Motivation and Objectives

3 N2HDM framework

4 Constraints

6 Results

6 Conclusion

< 一型

3

в

990

5/27

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	○●	00000	000000		00

• The naturalness of the Higgs mass leads to the hierarchy problem in the Standard model.

Objectives:

в

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	○●	00000	000000	00000000	00

- The naturalness of the Higgs mass leads to the hierarchy problem in the Standard model.
- Higgs self energy receives huge quantum corrections.

Objectives:

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	○●	00000	000000	0000000	00

- The naturalness of the Higgs mass leads to the hierarchy problem in the Standard model.
- Higgs self energy receives huge quantum corrections.
- Extending the Higgs sector is a promising solution to mitigate these divergences.

Objectives:

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	○●	00000	000000	0000000	00

- The naturalness of the Higgs mass leads to the hierarchy problem in the Standard model.
- Higgs self energy receives huge quantum corrections.
- Extending the Higgs sector is a promising solution to mitigate these divergences.

Objectives:

• Investigate the naturalness problem in the context of the **Next-Two-Higgs Doublet Model (N2HDM)** as an extension of the SM with an extra Higgs doublet and a singlet scalar.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	○●	00000	000000	0000000	00

- The naturalness of the Higgs mass leads to the hierarchy problem in the Standard model.
- Higgs self energy receives huge quantum corrections.
- Extending the Higgs sector is a promising solution to mitigate these divergences.

Objectives:

- Investigate the naturalness problem in the context of the **Next-Two-Higgs Doublet Model (N2HDM)** as an extension of the SM with an extra Higgs doublet and a singlet scalar.
- Explore how the **Veltman Condition** can be imposed to cancel quadratic divergences and constrain the model's parameter space.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
		•0000			

1 Introduction

2 Motivation and Objectives

3 N2HDM framework

4 Constraints

5 Results

6 Conclusion

下 利 王 下

ъ

Image: Image:

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		0●000	000000	0000000	00
N2HDM Para	metrization				

The scalar sector of N2HDM consists of two weak isospin doublets H_i (i = 1,2), with hypercharge Y = 1 and a real singlet field with hypercharge Y = 0 which are given by

$$H_i = \begin{pmatrix} \phi_i^{\pm} \\ \frac{1}{\sqrt{2}}(v_i + \phi_i + i\chi_i) \end{pmatrix} \text{ and } S = v_s + \phi_s.$$
(1)

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		0●000	000000	0000000	00
N2HDM Para	metrization				

The scalar sector of N2HDM consists of two weak isospin doublets H_i (i = 1,2), with hypercharge Y = 1 and a real singlet field with hypercharge Y = 0 which are given by

$$H_i = \begin{pmatrix} \phi_i^{\pm} \\ \frac{1}{\sqrt{2}} (\nu_i + \phi_i + i\chi_i) \end{pmatrix} \text{ and } S = \nu_s + \phi_s.$$
(1)

Implementation of the extra doublet and the singlet in the Standard Model. The lagrangian is,

$$\mathscr{L} = (D_{\mu}H_{1})^{\dagger}(D^{\mu}H_{1}) + (D_{\mu}H_{2})^{\dagger}(D^{\mu}H_{2}) + (\partial_{\mu}S)^{\dagger}(\partial^{\mu}S) - V(H_{1}, H_{2}, S)$$
(2)

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	000000	00000000	00

N2HDM Parametrization

The most general renormalizable scalar potential for the N2HDM that respect $SU(2)_L \otimes U(1)_Y$ gauge symmetry has the following form:

$$V(H_{1}, H_{2}, S) = m_{11}^{2} H_{1}^{\dagger} H_{1} + m_{22}^{2} H_{2}^{\dagger} H_{2} - \mu_{12}^{2} \left(H_{1}^{\dagger} H_{2} + h.c \right) + \frac{\lambda_{1}}{2} \left(H_{1}^{\dagger} H_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(H_{2}^{\dagger} H_{2} \right)^{2} + \lambda_{3} \left(H_{1}^{\dagger} H_{1} \right) \left(H_{2}^{\dagger} H_{2} \right) + \lambda_{4} \left(H_{1}^{\dagger} H_{2} \right) \left(H_{2}^{\dagger} H_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(H_{1}^{\dagger} H_{2} \right)^{2} + h.c \right] + \frac{1}{2} m_{S}^{2} S^{2} + \frac{\lambda_{6}}{8} S^{4} + \frac{1}{2} \left[\lambda_{7} H_{1}^{\dagger} H_{1} + \lambda_{8} H_{2}^{\dagger} H_{2} \right] S^{2}$$
(3)

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00●00	000000	0000000	00

N2HDM Parametrization

The most general renormalizable scalar potential for the N2HDM that respect $SU(2)_L \otimes U(1)_Y$ gauge symmetry has the following form:

$$V(H_{1}, H_{2}, S) = m_{11}^{2} H_{1}^{\dagger} H_{1} + m_{22}^{2} H_{2}^{\dagger} H_{2} - \mu_{12}^{2} \left(H_{1}^{\dagger} H_{2} + h.c\right) + \frac{\lambda_{1}}{2} \left(H_{1}^{\dagger} H_{1}\right)^{2} + \frac{\lambda_{2}}{2} \left(H_{2}^{\dagger} H_{2}\right)^{2} + \lambda_{3} \left(H_{1}^{\dagger} H_{1}\right) \left(H_{2}^{\dagger} H_{2}\right) + \lambda_{4} \left(H_{1}^{\dagger} H_{2}\right) \left(H_{2}^{\dagger} H_{1}\right) + \frac{\lambda_{5}}{2} \left[\left(H_{1}^{\dagger} H_{2}\right)^{2} + h.c \right] + \frac{1}{2} m_{S}^{2} S^{2} + \frac{\lambda_{6}}{8} S^{4} + \frac{1}{2} \left[\lambda_{7} H_{1}^{\dagger} H_{1} + \lambda_{8} H_{2}^{\dagger} H_{2} \right] S^{2}$$
(3)

- All scalar couplings λ_i (*i* = 1, 2, 3, 4, 5, 6, 7, 8) and μ_{12}^2 are assumed to be real parameters.
- This potential is obtained by imposing two \mathbb{Z}_2 symmetries on the scalar potential:

$$H_1 \to H_1, \quad H_2 \to -H_2, \quad S \to S.$$

$$H_1 \to H_1, \quad H_2 \to H_2, \quad S \to -S.$$

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		○○○●○	000000	0000000	00
N2HDM Parai	netrization				

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathscr{R}_{\alpha_{1,2,3}} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_s \end{pmatrix}, \qquad \mathscr{R}_{\alpha_{1,2,3}} = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -c_1 s_2 s_3 - s_1 c_3 & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -c_1 s_3 - s_1 s_2 c_3 & c_2 c_3 \end{pmatrix}$$

with $s_i = \sin \alpha_i$ and $c_i = \cos \alpha_i$ (i = 1, 2, 3)

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	000●0	000000	00000000	00
N2HDM Parar	netrization				

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathscr{R}_{\alpha_{1,2,3}} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_s \end{pmatrix}, \qquad \mathscr{R}_{\alpha_{1,2,3}} = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -c_1 s_2 s_3 - s_1 c_3 & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -c_1 s_3 - s_1 s_2 c_3 & c_2 c_3 \end{pmatrix}$$

with $s_i = \sin \alpha_i$ and $c_i = \cos \alpha_i$ (i = 1, 2, 3)

• Mixing in the CP-odd and charged sectors are exactly as the 2HDM.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	000●0	000000	0000000	00
N2HDM Parar	netrization				

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathscr{R}_{\alpha_{1,2,3}} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_s \end{pmatrix}, \qquad \mathscr{R}_{\alpha_{1,2,3}} = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -c_1 s_2 s_3 - s_1 c_3 & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -c_1 s_3 - s_1 s_2 c_3 & c_2 c_3 \end{pmatrix}$$

with $s_i = \sin \alpha_i$ and $c_i = \cos \alpha_i$ (i = 1, 2, 3)

- Mixing in the CP-odd and charged sectors are exactly as the 2HDM.
- After EWSB, the Higgs spectrum consist of:

 $\left\{ \begin{array}{ll} h_1, h_2, h_3 \quad (\text{CP-even scalars}) \text{ with } m_{h_1} < m_{h_2} < m_{h_3}, \\ A \quad (\text{CP-odd scalar}), \\ H^{\pm} \quad (\text{charged Higgs pair}). \end{array} \right.$

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	000●0	000000	00000000	00
N2HDM Parar	netrization				

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathscr{R}_{\alpha_{1,2,3}} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_s \end{pmatrix}, \qquad \mathscr{R}_{\alpha_{1,2,3}} = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -c_1 s_2 s_3 - s_1 c_3 & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -c_1 s_3 - s_1 s_2 c_3 & c_2 c_3 \end{pmatrix}$$

with $s_i = \sin \alpha_i$ and $c_i = \cos \alpha_i$ (i = 1, 2, 3)

- Mixing in the CP-odd and charged sectors are exactly as the 2HDM.
- After EWSB, the Higgs spectrum consist of:

 $\left\{ \begin{array}{ll} h_1, h_2, h_3 \quad (\text{CP-even scalars}) \text{ with } m_{h_1} < m_{h_2} < m_{h_3}, \\ A \quad (\text{CP-odd scalar}), \\ H^{\pm} \quad (\text{charged Higgs pair}). \end{array} \right.$

• "Physical" input free parameters:

 $m_{h_{1,2,3}}$, m_A , $m_{H^{\pm}}$, v , v_S , $\tan\beta = v_2/v_1$, $\alpha_{1,2,3}$, μ_{12}^2

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	0000●	000000	00000000	00
Higgs bosons	couplings				

• Extension of the \mathbb{Z}_2 symmetry to fermions determines four types:

	u-type	d-type	leptons
type I	Φ_2	Φ_2	Φ_2
type II	Φ_2	Φ_1	Φ_1
lepton-specific	Φ_2	Φ_2	Φ_1
flipped	Φ_2	Φ_1	Φ_2

 \Rightarrow exactly as in 2HDM

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		0000●	000000	0000000	00
Higgs bosons	s couplings				

• Extension of the \mathbb{Z}_2 symmetry to fermions determines four types:

	u-type	d-type	leptons
type I	Φ_2	Φ_2	Φ_2
type II	Φ_2	Φ_1	Φ_1
lepton-specific	Φ_2	Φ_2	Φ_1
flipped	Φ_2	Φ_1	Φ_2

 \Rightarrow exactly as in 2HDM

• N2HDM type-II Higgs bosons couplings to quarks and gauge bosons:

	$\chi_t^{h_i}$	$\chi^{h_i}_d$	$\chi^{h_i}_V$
h_1	$(c_{\alpha_2}s_{\alpha_1})/s_{\beta}$	$(c_{\alpha_1}c_{\alpha_2})/c_{\beta}$	$c_{eta-lpha_1}c_{lpha_2}$
h_2	$(c_{\alpha_1}c_{\alpha_3}-s_{\alpha_1}s_{\alpha_2}s_{\alpha_3})/s_{\beta}$	$-(c_{\alpha_3}s_{\alpha_1}+c_{\alpha_1}s_{\alpha_2}s_{\alpha_3})/c_{\beta}$	$-c_{\beta-\alpha_1}s_{\alpha_2}s_{\alpha_3}+c_{\alpha_3}s_{\beta-\alpha_1}$
h_3	$-(c_{\alpha_1}s_{\alpha_3}+c_{\alpha_3}s_{\alpha_1}s_{\alpha_2})/s_{\beta}$	$(s_{\alpha_1}s_{\alpha_3}-c_{\alpha_1}c_{\alpha_3}s_{\alpha_2})/c_{\beta}$	$-c_{\beta-\alpha_1}s_{\alpha_2}c_{\alpha_3}-s_{\alpha_3}s_{\beta-\alpha_1}$

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
			• 0 0000		

1 Introduction

- **2** Motivation and Objectives
- **3** N2HDM framework

Veltman Condition

► 4 Ξ

< □ > < 同

в

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	⊙●○○○○	0000000	00

The parameter space of the N2HDM must satisfy several theoretical and experimental constraints:

Theoretical Constraints:

• Perturbative Unitarity constraints [Eur. Phys. J. C 80, 13 (2020)].

Experimental Constraints:

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	○●○○○○	0000000	00

The parameter space of the N2HDM must satisfy several theoretical and experimental constraints:

Theoretical Constraints:

- Perturbative Unitarity constraints [Eur. Phys. J. C 80, 13 (2020)].
- Vacuum stability [Eur.Phys.J.C 84 (2024) 8, 799].

Experimental Constraints:

イロト イポト イヨト イヨト

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	o●○○○○	00000000	00

The parameter space of the N2HDM must satisfy several theoretical and experimental constraints:

Theoretical Constraints:

- Perturbative Unitarity constraints [Eur. Phys. J. C 80, 13 (2020)].
- Vacuum stability [Eur.Phys.J.C 84 (2024) 8, 799].

Experimental Constraints:

• HiggsTools library [arXiv:2210.09332] [hep-ph]: for comparing a wide class of BSM models to all available experimental results from searches for new scalar particles at colliders and measurements of the 125 GeV Higgs boson properties at LHC.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	o●○○○○	00000000	00

The parameter space of the N2HDM must satisfy several theoretical and experimental constraints:

Theoretical Constraints:

- Perturbative Unitarity constraints [Eur. Phys. J. C 80, 13 (2020)].
- Vacuum stability [Eur.Phys.J.C 84 (2024) 8, 799].

Experimental Constraints:

- HiggsTools library [arXiv:2210.09332] [hep-ph]: for comparing a wide class of BSM models to all available experimental results from searches for new scalar particles at colliders and measurements of the 125 GeV Higgs boson properties at LHC.
- Electroweak precision observables (EWPT) are expressed in terms of the parameters S, T, and U which are required to be within 95% C.L [Eur.Phys.J.C 84 (2024) 8, 799].

人名德人 化原因 化原因

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	○●○○○○	00000000	00

The parameter space of the N2HDM must satisfy several theoretical and experimental constraints:

Theoretical Constraints:

- Perturbative Unitarity constraints [Eur. Phys. J. C 80, 13 (2020)].
- Vacuum stability [Eur.Phys.J.C 84 (2024) 8, 799].

Experimental Constraints:

- HiggsTools library [arXiv:2210.09332] [hep-ph]: for comparing a wide class of BSM models to all available experimental results from searches for new scalar particles at colliders and measurements of the 125 GeV Higgs boson properties at LHC.
- Electroweak precision observables (EWPT) are expressed in terms of the parameters S, T, and U which are required to be within 95% C.L [Eur.Phys.J.C 84 (2024) 8, 799].
- the mass of the charged Higgs boson is restricted to be at least approximately 580 GeV [arXiv:2207.09959 [hep-ph]].

Bassim Taki

The Next-Two-Higgs-Doublet Model confronts the Naturalness Problem

October 20, 2024

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
			00000		

1 Introduction

- **2** Motivation and Objectives
- **3** N2HDM framework
- Constraints
 Veltman Conditions

5 Results

3

в

< □ > < 同

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	○○○●○○	0000000	00
Modified Velt	man Conditions				

• The Veltman Condition (VC) addresses the naturalness problem in the Higgs mass by demanding that the quadratic divergences must be canceled or kept at a manageable level.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	○○○●○○	0000000	00
Modified Velt	man Conditions				

- The Veltman Condition (VC) addresses the naturalness problem in the Higgs mass by demanding that the quadratic divergences must be canceled or kept at a manageable level.
- Assuming that the vacuum is CP-even, one needs to calculate the quadratic divergences that show up in the tadpoles for the three CP-even neutral Higgs of our model.

Figure 1: Higgs bosons h_i (i = 1, 2, 3) tadpole diagrams showing the contribution at one loop of: fermions (f): straight line; vector bosons ($V = W^{\pm}, Z$): wiggly line; scalars ($S = h_1, h_2, h_3, A, H^{\pm}$): short dashed line; and ghosts ($\eta = \eta^0, \eta^{\pm}$): long-dashed line.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	000000	00000000	00
Modified Velt	man Conditions				

• For each Higgs particle h_k (k = 1, 2, 3), one obtains:

$$T_{h_k} = \sum_{i=1}^9 c_i^{h_k} s_i^{h_k} t_i^{h_k} - \sum_{i=U}^D c_i^{h_k} s_i^{h_k} t_i^{h_k} - \sum_{i=10}^{11} c_i^{h_k} s_i^{h_k} t_i^{h_k}$$
(4)

where the couplings $c_i^{h_k}$, the symmetry factors $s_i^{h_k}$, and the propagator loops $t_i^{h_k}$ for each CP-even neutral Higgs boson h_k

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	○○○○●○	00000000	00
Modified Veltr	nan Conditions				

• For each Higgs particle h_k (k = 1, 2, 3), one obtains:

$$T_{h_k} = \sum_{i=1}^9 c_i^{h_k} s_i^{h_k} t_i^{h_k} - \sum_{i=U}^D c_i^{h_k} s_i^{h_k} t_i^{h_k} - \sum_{i=10}^{11} c_i^{h_k} s_i^{h_k} t_i^{h_k}$$
(4)

where the couplings $c_i^{h_k}$, the symmetry factors $s_i^{h_k}$, and the propagator loops $t_i^{h_k}$ for each CP-even neutral Higgs boson h_k

• The linear combination of the fermionic coupling constants

$$\mathcal{R}_{i1}^{-1}c_{f\bar{f}}^{h_1} + \mathcal{R}_{i2}^{-1}c_{f\bar{f}}^{h_2} + \mathcal{R}_{i3}^{-1}c_{f\bar{f}}^{h_3} = 0 \quad \forall i = 1, 2, 3;$$
(5)

which it turns out that

$$\mathscr{R}_{i1}^{-1}T_{h_1} + \mathscr{R}_{i2}^{-1}T_{h_2} + \mathscr{R}_{i3}^{-1}T_{h_3} = 0 \quad \forall i = 1, 2, 3$$
(6)

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	○○○○○●	0000000	00

• Using Dimensional Regularization approach, and by assuming the Feynman-'t Hooft gauge-invariant, the type-II N2HDM one-loop tadpoles can be expressed as:

$$T_{h_1} = \left[-\frac{12m_b^2}{\nu^2 c_\beta^2} + \left(3\lambda_1 + 2\lambda_3 + \lambda_4 + \frac{\lambda_7}{4} \right) + \frac{3m_W^2}{\nu^2} \left(2 + \frac{1}{c_W^2} \right) \right] \le \epsilon$$
(7)

$$T_{h_2} = \left[-\frac{12m_t^2}{\nu^2 s_{\beta}^2} + \left(3\lambda_2 + 2\lambda_3 + \lambda_4 + \frac{\lambda_8}{4} \right) + \frac{3m_W^2}{\nu^2} \left(2 + \frac{1}{c_W^2} \right) \right] \le \epsilon$$
(8)

$$T_{h_3} = \left[\frac{3}{8}\lambda_6 + \lambda_7 + \lambda_8\right] \le \epsilon \tag{9}$$

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	○○○○○●	0000000	00

• Using Dimensional Regularization approach, and by assuming the Feynman-'t Hooft gauge-invariant, the type-II N2HDM one-loop tadpoles can be expressed as:

$$T_{h_1} = \left[-\frac{12m_b^2}{\nu^2 c_\beta^2} + \left(3\lambda_1 + 2\lambda_3 + \lambda_4 + \frac{\lambda_7}{4} \right) + \frac{3m_W^2}{\nu^2} \left(2 + \frac{1}{c_W^2} \right) \right] \le \epsilon$$
(7)

$$T_{h_2} = \left[-\frac{12m_t^2}{\nu^2 s_\beta^2} + \left(3\lambda_2 + 2\lambda_3 + \lambda_4 + \frac{\lambda_8}{4} \right) + \frac{3m_W^2}{\nu^2} \left(2 + \frac{1}{c_W^2} \right) \right] \le \epsilon$$
(8)

$$T_{h_3} = \left[\frac{3}{8}\lambda_6 + \lambda_7 + \lambda_8\right] \le \epsilon \tag{9}$$

The 2HDM limit ⇐⇒ λ₇ = λ₈ = 0 [Nucl. Phys. B 926, 167 (2018), arXiv:1709.07219 [hep-ph]

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
				•0000000	

1 Introduction

- **2** Motivation and Objectives
- **3** N2HDM framework
- **4** Constraints

6 Conclusion

► 4 Ξ

< □ > < 同

в

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	000000	0000000	00
Parameter sca	ເກ				

 \Rightarrow we perform a random scan over the parameter space of the N2HDM type-II, by applying all the theoretical and experimental constraints and we keep only the points in the parameter space that fits within the definition of VC (as the parameter ϵ must be controllably small, we consider the cases $\epsilon = 4, 6, 10$).

m_{h_1}	$m_{h_{2,3}}$	m_A	m_{H^\pm}	$\tan\beta$	$\alpha_{1,2,3}$	μ_{12}^2	v_s
125.09	[130; 1000]	[200; 1000]	[580; 1000]	[0.5; 12]	$[-\frac{\pi}{2};\frac{\pi}{2}]$	$[0; 10^6]$	[100; 1000]

Table 1: Scan ranges of the Type-II input parameters. Masses, μ_{12}^2 , and v_S are given in GeV.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	000000	0000000	00
Numerical Re	esults				

• for $\epsilon = 4$ and taking into account limit from B-physics - most of the orange points falling within the range of m_A (resp. $m_{H^{\pm}}$), from 700 GeV to 858 GeV (resp. from 706 GeV to 824 GeV).

イロト (雪) (ヨ) (ヨ)

21 / 27

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00	00	00000	000000	00000000	00
Numerical Re	sults				

• For h_2 (resp. h_3), the excluded Higgs mass region is significantly extended with lower bounds around 604 GeV (resp. 776 GeV) and upper bounds reaching 809 GeV (resp. 962 GeV).

22 / 27

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	000000	00000●00	00
Numerical Re	sults				

Fig: Projection of the surviving samples of the type-II N2HDM, while respecting the Veltman conditions for $\epsilon = 4$, in the $[\sin(\alpha_1 - \beta), \tan\beta]$ plane. Such a projection is overlaid on the expected exclusion limits at 2σ in the type-II 2HDM hypothesis, according to to the measured rates of Higgs boson production and decays by ATLAS [ATLAS-CONF-2021-053 (2021)].

⇒ The model outcome falls squarely within the observed range at 2σ , fully reflecting the consistency of N2HDM with the experimental measurements, together with the VC.

The Next-Two-Higgs-Doublet Model confronts the Naturalness Problem

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
00		00000	000000	000000●0	00
Benchmark da	atasets				

BPs	t_{β}	c_{α_2}	$s_{\beta-\alpha_1}$	$c_{\beta-\alpha_1}$	m_{h_1}	m_{h_2}	m_{h_3}	m_A	$m_{H^{\pm}}$	μ	v_S
BP1	3.23	0.9927	-0.0076	0.999971	125.09	676.714	779.429	700.329	708.470	363	379
BP2	2.39	0.9908	-0.023606	0.999721	125.09	811.969	966.002	858.407	826.424	500.70	379.55
BP3	1.53	0.9778	-0.000842	1.0	125.09	606.698	851.301	794.755	740.410	503.47	379.55
BP4	1.29	0.9249	-0.02957	0.999563	125.09	394.440	691.753	497.419	592.647	358.012	379.55
BP5	1.03	0.9835	-0.005086	0.999987	125.09	601.137	696.009	661.480	643.149	459.600	379.55

Table 2: Higgs bosons masses, μ -parameter and singlet's *vev* v_S (in GeV) are shown in the scenario of h1 is the SM-like Higgs boson for various values of angles α 's and β .

Introduct 00		Mot 00	Motivation and Objectives			2HDM framework Constrair		ints Results		Conclusion 00
Benchmark datasets										
_							That			
	BPs	$\chi_t^{h_1}$	$\chi_b^{h_1}$	$\chi_V^{h_1}$	$R^{h_1}_{\gamma\gamma}$	$R^{h_1}_{Z\gamma}$	$\frac{\Gamma_{h_1}^{tot}}{\Gamma_h^{tot}(SM)}$	S	T	U
	exp	$1.02\substack{+0.19 \\ -0.15}$	$0.91\substack{+0.17 \\ -0.16}$	$1.035\substack{+0.031\\-0.031}$	$1.04\substack{+0.1 \\ -0.09}$	$2.2^{+0.7}_{-0.7}$	$0.98^{+0.31}_{-0.25}$	$-0.02\substack{+0.1\\-0.1}$	$0.03\substack{+0.12 \\ -0.12}$	$0.01\substack{+0.11\-0.11}$

					21	h_h (SIVI)			
exp	$1.02^{+0.19}_{-0.15}$	$0.91\substack{+0.17 \\ -0.16}$	$1.035\substack{+0.031\\-0.031}$	$1.04\substack{+0.1\\-0.09}$	$2.2^{+0.7}_{-0.7}$	$0.98^{+0.31}_{-0.25}$	$-0.02\substack{+0.1\\-0.1}$	$0.03^{+0.12}_{-0.12}$	$0.01\substack{+0.11\-0.11}$
BP1	0.995	0.968	0.992	1.032	1.027	0.955	0.000502	0.000621	-0.000058
BP2	1.000	0.934	0.990	1.076	1.081	0.913	0.001837	0.003784	-0.000074
BP3	0.978	0.976	0.977	0.958	0.958	0.955	0.007983	0.024267	-0.000128
BP4	0.945	0.889	0.924	0.955	0.948	0.817	0.007795	0.026440	-0.000193
BP5	0.988	0.978	0.983	0.980	0.982	0.962	0.004677	-0.003014	-0.000128
					_				

Table 3: The h_1 SM-like relative couplings, decays rates and S, T and U parameters.

< □ > < 同

ъ

Introducti 00		Moti 00	vation and Objec		N2HDM framework 00000		Constrai 00000	nts O	Results 0000000●	Conc 00	
Benchmark datasets											
_							That				-
	BPs	$\chi_t^{h_1}$	$\chi_b^{h_1}$	$\chi_V^{h_1}$	$R^{h_1}_{\gamma\gamma}$	$R^{h_1}_{Z\gamma}$	$\frac{\Gamma_{h_1}^{tot}}{\Gamma_h^{tot}(SM)}$	S	T	U	

BPs	$\chi_t^{h_1}$	$\chi_b^{h_1}$	$\chi_V^{h_1}$	$R^{h_1}_{\gamma\gamma}$	$R^{h_1}_{Z\gamma}$	$\frac{\Gamma_{h_1}^{tot}}{\Gamma_h^{tot}(SM)}$	S	T	U
exp	$1.02^{+0.19}_{-0.15}$	$0.91\substack{+0.17 \\ -0.16}$	$1.035\substack{+0.031\\-0.031}$	$1.04^{+0.1}_{-0.09}$	$2.2^{+0.7}_{-0.7}$	$0.98^{+0.31}_{-0.25}$	$-0.02\substack{+0.1\\-0.1}$	$0.03^{+0.12}_{-0.12}$	$0.01\substack{+0.11\-0.11}$
BP1	0.995	0.968	0.992	1.032	1.027	0.955	0.000502	0.000621	-0.000058
BP2	1.000	0.934	0.990	1.076	1.081	0.913	0.001837	0.003784	-0.000074
BP3	0.978	0.976	0.977	0.958	0.958	0.955	0.007983	0.024267	-0.000128
BP4	0.945	0.889	0.924	0.955	0.948	0.817	0.007795	0.026440	-0.000193
BP5	0.988	0.978	0.983	0.980	0.982	0.962	0.004677	-0.003014	-0.000128

Table 3: The h_1 SM-like relative couplings, decays rates and S, T and U parameters.

 \Rightarrow In view of the upcoming HL-LHC, for small tan β solutions (below 3.5), lead to a consistent agreement of $R_{\gamma\gamma}^{\text{HL-LHC}} = 1 \pm 0.04$ and $R_{Z\gamma}^{\text{HL-LHC}} = 1 \pm 0.23$ with the expected experimental results.

Introduction	Motivation and Objectives	N2HDM framework	Constraints	Results	Conclusion
					•0

1 Introduction

- **2** Motivation and Objectives
- **3** N2HDM framework
- **4** Constraints

5 Results

< □ > < 同

в

Introduction 00	Motivation and Objectives	N2HDM framework 00000	Constraints 000000	Results 0000000	Conclusion ○●
Conclusion	and Perspectives				

• The Next-Two-Higgs Doublet Model (N2HDM) provides a viable framework to address the naturalness problem in the Higgs mass.

Introduction 00	Motivation and Objectives	N2HDM framework 00000	Constraints 000000	Results 0000000	Conclusion $\circ \bullet$
Conclusion an	nd Perspectives				

- The Next-Two-Higgs Doublet Model (N2HDM) provides a viable framework to address the naturalness problem in the Higgs mass.
- By imposing the Veltman Condition, we can significantly constrain the Higgs boson masses and the model's parameter space.

Introduction 00	Motivation and Objectives	N2HDM framework 00000	Constraints 000000	Results 0000000	Conclusion $\circ \bullet$
Conclusion an	nd Perspectives				

- The Next-Two-Higgs Doublet Model (N2HDM) provides a viable framework to address the naturalness problem in the Higgs mass.
- By imposing the Veltman Condition, we can significantly constrain the Higgs boson masses and the model's parameter space.
- Future collider experiments, like the HL-LHC, will further test these benchmark points, especially the heavier Higgs bosons.

Introduction 00	Motivation and Objectives	N2HDM framework 00000	Constraints 000000	Results 0000000	Conclusion $O \bullet$
Conclusion ar	nd Perspectives				

- The Next-Two-Higgs Doublet Model (N2HDM) provides a viable framework to address the naturalness problem in the Higgs mass.
- By imposing the Veltman Condition, we can significantly constrain the Higgs boson masses and the model's parameter space.
- Future collider experiments, like the HL-LHC, will further test these benchmark points, especially the heavier Higgs bosons.
- Investigating the collider signatures of the additional Higgs bosons (h_2 , h_3 , A, H^{\pm}) and refining the scan with new experimental data.

Introduction 00	Motivation and Objectives	N2HDM framework 00000	Constraints 000000	Results 0000000	Conclusion $O \bullet$
Conclusion ar	nd Perspectives				

- The Next-Two-Higgs Doublet Model (N2HDM) provides a viable framework to address the naturalness problem in the Higgs mass.
- By imposing the Veltman Condition, we can significantly constrain the Higgs boson masses and the model's parameter space.
- Future collider experiments, like the HL-LHC, will further test these benchmark points, especially the heavier Higgs bosons.
- Investigating the collider signatures of the additional Higgs bosons (h_2 , h_3 , A, H^{\pm}) and refining the scan with new experimental data.

Introduction 00	Motivation and Objectives	N2HDM framework 00000	Constraints 000000	Results 0000000	$\begin{array}{c} \text{Conclusion} \\ \text{O} \end{array}$
Conclusion ar	nd Perspectives				

- The Next-Two-Higgs Doublet Model (N2HDM) provides a viable framework to address the naturalness problem in the Higgs mass.
- By imposing the Veltman Condition, we can significantly constrain the Higgs boson masses and the model's parameter space.
- Future collider experiments, like the HL-LHC, will further test these benchmark points, especially the heavier Higgs bosons.
- Investigating the collider signatures of the additional Higgs bosons (h_2 , h_3 , A, H^{\pm}) and refining the scan with new experimental data.

Shank You