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Factorization Theorem: Factorization means the ability to separate a hadronic cross section into the 

convolution of parton distribution functions (PDFs) and partonic cross section. 

1. Collinear factorization: This framework assumes the elementary constituents of the hadrons, 

partons (quarks and gluons), move collinear to the hadron, i.e. :  In this framework for hadronic 

cross section one needs what we call collinear PDFs.

2. -factorization: This framework assumes the elementary constituents of the hadrons also have 

transverse momentum in addition to the momentum along the hadron, i.e.: . In this framework for 

hadronic cross section needs Transverse Momentum Dependent  PDFs (TMD-PDFs) or 

Unintegrated Parton Distribution Functions (UPDFs).

Factorization Theorem
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Collinear factorization framework

• Collinear factorization : in the collinear factorization, it is assumed that the parton moves collinear to 

the proton and enters into the hard collision. Therefore in the collinear factorization theorem, it is 

supposed that the constituent partons can only have a fraction of the proton momentum:

𝝈 =  

𝒊,𝒋𝜖𝒒,𝒈

 
𝒅𝒙𝟏
𝒙𝟏

𝒅𝒙𝟐
𝒙𝟐

𝒇𝒊 𝒙𝟏, 𝝁
𝟐 𝒇𝒋 𝒙𝟐, 𝝁

𝟐  𝝈𝒊𝒋

• To describe the distribution of these partons inside the proton, one should use the PDFs.
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𝒌𝒕-factorization framework 

𝒌𝒕-factorization: One can write the p-p collision cross section in this framework as follows:

𝝈 =  

𝒂,𝒃=𝒒,𝒈

 
d𝒙𝟏
𝒙𝟏

d𝒙𝟐
𝒙𝟐

d𝒌𝟏𝒕
𝟐

𝒌𝟏𝒕
𝟐

d𝒌𝟐𝒕
𝟐

𝒌𝟐𝒕
𝟐

𝒇𝒂 𝒙𝟏, 𝒌𝟏𝒕
𝟐 , 𝝁𝟐 𝒇𝒃 𝒙𝟐, 𝒌𝟐𝒕

𝟐 , 𝝁𝟐  𝝈𝒂𝒃
∗

First step is obtaining suitable UPDFs that is a hard task. Fortunately some approaches based 
on the DGLAP evolution equation exist which allow to obtain UPDFs simply with powerful 
predicting power, for example the KMR, MRW and PB (Parton Branching) approaches. 
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(z, 𝒌𝒕) -factorization framework

In new formalism the UPDFs become z dependent, (DUPDFs),  and hence one needs to modify hadronic 
factorization formula for calculating the cross section, compared to the 𝑘𝑡-factorization approach. Therefore, by 
generalizing the 𝑘𝑡-factorization framework, one can write the general p–p cross section formula in the (z, 𝑘𝑡)-
factorization as: 

𝝈 =  

𝒂,𝒃=𝒒,𝒈

 
𝒙𝟏

𝟏

𝒅𝒛𝟏 
𝒙𝟐

𝟏

𝒅𝒛𝟐 
𝟎

𝟏 d𝒙𝟏
𝒙𝟏

 
𝟎

𝟏 d𝒙𝟐
𝒙𝟐

 
𝟎

∞𝒅𝒌𝟏𝒕
𝟐

𝒌𝟏𝒕
𝟐

 
𝟎

∞𝒅𝒌𝟐𝒕
𝟐

𝒌𝟐𝒕
𝟐

𝒇𝒂 𝒙𝟏, 𝒛𝟏, 𝒌𝟏𝒕
𝟐 , 𝝁𝟐 𝒇𝒃 𝒙𝟐, 𝒛𝟐, 𝒌𝟐𝒕

𝟐 , 𝝁𝟐  𝝈𝒂𝒃
∗

In this framework due to considering the z, fractional momenta of parent parton in the last step, one can have the 
full kinematics of the last step. Therefore the last step emitted parton comes directly into the calculation.
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In the small x limit, the transverse

momentum of parton (𝒌𝒕), becomes

comparable against the collinear

component, i.e., x P (P is the proton

momentum). Therefore, the evolution

equation of collinear parton, should

be generalized by the fact that, parton

can also have transverse momentum.

In contrast to the 𝒌𝒕-factorization,

where the full kinematics of hard

parton is not considered, in the (z,

𝒌𝒕)-factorization the full kinematics

is taken into account. In this

approach, the last step emitted

parton plays an important role in the

DCS calculation.
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Illustration of the (z, 𝑘𝑡)- factorization 

at hadron-hadron collision. In the left 

panel of this figure, the transverse 

momentum of each incoming parton

into the sub-process is generated by a 

single parton emission in the last 

evolution step. While, in the right 

panel of this figure, the last evolution 

step is factorized into the DUPDFs, 

i.e., 𝑓𝑞𝑖(𝑥𝑖, 𝑧𝑖, 𝑘𝑖𝑡
2 , 𝜇2), where i= 1, 2. 
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• DKMR based on KMR

• DMRW based on LO-MRW

• DMRW′ based on NLO- MRW

R. Kord Valeshabadi, M. Modarres, S .Rezaie, R.  Aminzadeh Nik, Inclusive jet and dijet productions 

using 𝑘𝑡 and (z, 𝑘𝑡 )-factorizations versus ZEUS collaboration data, J.Phys.G 48 (2021) 8, 085009.

DUPDFs Methods
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• We investigate electron-proton inclusive jet and dijet productions at 300 GeV and 319 GeV in the 

ZEUS experiment within the (z, 𝑘𝑡)-factorization.

• We use the MRW DUPDFs at LO and NLO levels (DMRW and DMRW′), in addition to the KMR 

DUPDF (DKMR). 

• The cross section calculation is performed directly.

• The DUPDFs are unintegrated over both 𝑘𝑡and z.



• All the DUPDFs predictions undershoot the data of dσ/d𝑄2. We also see the result of the 

DMRW′ is smaller with respect to the predictions of DKMR and DMRW due to the cutoff 

and virtuality.

• In contrast to the corresponding data of inclusive jet production, it can be observed that 

the results of the dijet subprocesses, Using DUPDFs have excellent agreement with the 

data. 
J. Phys. G 48, 085009 (2021) 12



• The predictions of the DKMR and DMRW are in relatively good agreement with the data of 

dσ/d𝐸𝑇,𝐵
𝑗𝑒𝑡

channels of the inclusive jet and dijet prediction.

• We also see the result Of the DMRW′ is smaller with respect to the predictions of DKMR and 

DMRW due to the cutoff and virtuality. Because we are working in the small center of mass 

energy, 𝑘2 becomes large. As a result of this, DMRW′ predictions become smaller than other 

DUPDFs .
J. Phys. G 48, 085009 (2021) 13



• We study the Z boson production via the proton-proton (p-p) collisions within the 𝑘𝑡 and (z, 𝑘𝑡)-factorization

frameworks, using the Martin-Ryskin-Watt (MRW) unintegrated parton distribution functions (UPDFs) and 

double unintegrated parton distribution functions (DUPDFs), respectively.

• For calculation of the differential cross section (DCS) within the 𝑘𝑡-factorization (𝑘𝑡 is the partonic transverse 

momentum), the KATIE parton level event generator is used, while for the (z, 𝑘𝑡)-factorization, the DCS is directly 

computed.

• We perform these calculations for the first three quark flavors, i.e., up, down, strange, and

their anti-quarks.

• 𝜇𝑓 = 𝜇𝑟 = 𝑝𝑡
𝑙𝑙2 + 𝑚𝑙𝑙2 as the factorization and renormalization scales is chosen, in which 𝑝𝑡

𝑙𝑙and 𝑚𝑙𝑙

are the transverse momentum and the invariant mass of the output dilepton, respectively.

• We compare our results with the 13 TeV data of the ATLAS, LHCb, CMS collaborations and the corresponding collinear

factorization prediction.

S. Rezaie, M. Modarres, Investigation of the Z boson production via hadron–hadron collisions in the 𝑘𝑡 and (z, 𝑘𝑡 )-factorization frameworks., 

Eur.Phys.J.C (2023) 83, 678.

Numerical Methods 
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KaTie parton level event generator

• KaTie is the first parton level event generator which calculates cross section 
for different parton level processes in collinear and kt-factorization 
frameworks.

• This library is mostly written in Fortran.

• One can use TMDLib libraries for input UPDFs. However, when UPDFs are 
not available in TMDLIB, one should generate grid files for those UPDFs. 

• KaTie can also generate LHEF event files, which late can feed into CASCADE 
to generate hadronic events. 
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The LHCb experiment 

In this figure, one observes the variation of KMR, 

MRW and DMRW approaches with respect to the 

𝑦𝑧. It is evident from this figure that, their results are 

close to each other in the Z boson rapidity region of 

𝑦𝑧 < 4, while they become separate from each other 

in the 𝑦𝑧 > 4, wherein the MRW fails to describe the 

data well in that region. Additionally, despite the 

fact that the ResBos result, can cover the data well 

within all rapidity regions, but it tends to 

overestimate the data at large 𝑦𝑧 limit.

Eur. Phys. J. C 83, 678 (2023) 16



In this figure, a comparison between the 

contribution of the higher order sub-processes, 

denoted by 𝜎2, and lower order sub-processes, 

denoted by 𝜎1, for the MRW and the DMRW 

are compared. As it is obvious from this 

figure, the role of higher order sub-processes, 

is negligibly relative to the lower order sub-

processes. Therefore one can safely ignore 

their contributions into our calculation.

The LHCb experiment 

Eur. Phys. J. C 83, 678 (2023) 17



In this figure, it can be observed the double DCS 

with respect to 𝑝𝑡
𝑙𝑙 in various rapidity regions of the 

produced Z boson. Similar to our previous results 

for the cross section with respect to 𝑝𝑡
𝑙𝑙, it can be 

obtained relatively the same behavior in all of the 

regions except where 4 < 𝑦𝑧 < 4.5. In fact as we 

move toward large rapidity regions, the DMRW 

becomes much better relative to the MRW, 

especially in small and large dilepton transverse 

momentum regions. 

The LHCb experiment 

Eur. Phys. J. C 83, 678 (2023) 18



Similar to our results of the MRW 

and the DMRW for the LHCb

experiment, it can also be observed 

relatively the same behavior for this 

data. It should be mentioned that 

because in this experiment the 

forward regions, i.e., 2.5 ≤ 𝑦𝑧 ≤ 4.5, 

do not play any role in calculation, 

so similar behavior can be seen in 

both frameworks.

The CMS experiment 

Eur. Phys. J. C 83, 678 (2023) 19



Conclusion

• Finally, it should be clarified that although the collinear framework can describe experimental data well with respect 

to the 𝑘𝑡and (z, 𝑘𝑡)- factorizations, it should be noted that these two frameworks can also exhibit remarkable results 

of exclusive processes with suitable UPDFs and DUPDFs.

• For instance, our recent works on three-photon productions and Drell-Yan processes have demonstrated that NLO-

MRW and PB UPDFs can yield remarkable results. However, in this work, we aimed to provide a one-to-one 

comparison between the 𝑘𝑡 and (z, 𝑘𝑡)-factorizations to better understand the difference between these two 

frameworks. 

• As we have demonstrated in this work, the 𝑘𝑡 and (z, 𝑘𝑡) frameworks exhibit relatively similar behavior in all regions 

except for large rapidity limits. Nevertheless, it is an important goal to generate these DUPDFs and better describe 

the results. 
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KMR

KMR is based on DGLAP evolution equation. The main assumption of the DGLAP evolution (Strong 

Ordering) has been altered on the “last step emission”, i.e.

𝐟𝐪
𝐊𝐌𝐑 𝐱, 𝐤𝐭

𝟐, 𝛍𝟐 = 𝑻𝒒
𝑲𝑴𝑹 𝒌𝒕

2, 𝝁2

𝜶𝒔 𝒌𝒕
𝟐

𝟐𝝅
 
𝒙

𝟏−𝚫

𝑷𝒒𝒒
𝑳𝑶 𝒛

𝒙

𝒛
𝒒𝑳𝑶

𝒙

𝒛
, 𝒌𝒕

𝟐 + 𝑷𝒒𝒈
𝑳𝑶 𝒛

𝒙

𝒛
𝒈𝑳𝑶

𝒙

𝒛
, 𝒌𝒕

𝟐 𝒅𝒛

𝒇𝒈
𝑲𝑴𝑹 𝒙, 𝒌𝒕

𝟐, 𝝁𝟐 = 𝑻𝒈
𝑲𝑴𝑹 𝒌𝒕

2, 𝝁2

𝜶𝒔 𝒌𝒕
𝟐

𝟐𝝅
 
𝒙

𝟏−𝚫

𝑷𝒈𝒈
𝑳𝑶 𝒛

𝒙

𝒛
𝒈𝑳𝑶

𝒙

𝒛
, 𝒌𝒕

𝟐 + 

𝐪

𝑷𝒈𝒒
𝑳𝑶 𝒛

𝒙

𝒛
𝒒𝑳𝑶

𝒙

𝒛
, 𝒌𝒕

𝟐 𝒅𝒛

𝐓𝐪
𝐊𝐌𝐑 𝐤𝐭

𝟐,𝛍2 = 𝐞𝐱𝐩 − 𝐤𝐭𝟐
𝛍𝟐 𝐝𝜿𝐭

𝟐

𝜿𝐭
𝟐

𝛂𝐬 𝐤𝐭
𝟐

𝟐𝛑
 𝟎
𝟏−𝚫

𝐏𝐪𝐪
𝐋𝐎 𝝃 𝐝𝝃

𝐓𝐠
𝐊𝐌𝐑 𝐤𝐭

𝟐, 𝛍2 = 𝐞𝐱𝐩 − 
𝐤𝐭
𝟐

𝛍𝟐 𝐝𝜿𝐭
𝟐

𝜿𝐭
𝟐

𝛂𝐬 𝐤𝐭
𝟐

𝟐𝛑
 
𝟎

𝟏−𝚫

[𝝃𝐏𝐠𝐠
𝐋𝐎 𝝃 + 𝑛𝑓𝐏qg

𝐋𝐎 𝝃 ] 𝐝𝝃
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LOMRW

𝒇𝒒 𝒙, , 𝒌𝒕
𝟐, 𝝁𝟐 = 𝑻𝒒 𝒌𝒕

𝟐, 𝝁𝟐
𝜶𝒔 𝒌𝒕

𝟐

𝟐𝝅
 
𝒙

𝟏

𝑷𝒒𝒒 𝒛 𝒇𝒒
𝒙

𝒛
, 𝒌𝒕

𝟐 𝚯 𝐳 − 𝟏 + 𝚫 + 𝑷𝒒𝒈 𝒛 𝒇𝒈
𝒙

𝒛
, 𝒌𝒕

𝟐 𝒅𝒛

𝒇𝒈 𝒙, 𝒌𝒕
𝟐, 𝝁𝟐 = 𝑻𝒈 𝒌𝒕

𝟐, 𝝁𝟐
𝜶𝒔 𝒌𝒕

𝟐

𝟐𝝅
 
𝒙

𝟏

𝑷𝒈𝒈 𝒛 𝒇𝒈
𝒙

𝒛
, 𝒌𝒕

𝟐 𝚯 𝐳 − 𝟏 + 𝚫 + 

𝒒

𝑷𝒈𝒒 𝒛 𝒇𝒒
𝒙

𝒛
, 𝒌𝒕

𝟐 𝒅𝒛

In the above equations, the cutoff 𝚯 𝐳 − 𝟏 + 𝚫 is imposed in order to avoid soft gluon emissions. This 

cutoff can be determined according to the angular ordering in the last evolution step, i.e.:

𝚫 =
𝒌𝒕

𝝁 + 𝒌𝒕

𝑻𝒒 𝒌𝒕
𝟐, 𝝁𝟐 = 𝒆𝒙𝒑 − 

𝒌𝒕
𝟐

𝝁𝟐 𝒅𝜿𝐭
𝟐

𝜿𝐭
𝟐

𝜶𝒔 𝜿𝐭
𝟐

𝟐𝝅
 
𝟎

𝟏

𝐏𝐪𝐪
𝐋𝐎 𝝃 𝚯 𝝃 − 𝟏 + 𝚫 𝐝𝝃

𝑻𝒈 𝒌𝒕
𝟐, 𝝁𝟐 = 𝐞𝐱𝐩 − 

𝐤𝐭
𝟐

𝛍𝟐 𝐝𝜿𝐭
𝟐

𝜿𝐭
𝟐

𝛂𝐬 𝜿𝐭
𝟐

𝟐𝛑
 
𝟎

𝟏

[𝝃𝐏𝐠𝐠
𝐋𝐎 𝝃 𝚯 𝝃 − 𝟏 + 𝚫 𝚯 𝝃 − 𝚫 +𝒏𝒇𝐏𝒒𝒈

𝐋𝐎 𝝃 ]𝐝𝝃
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NLOMRW

• In the NLO-MRW scale is set: 𝑘2 = −
𝑘𝑡
2

1−𝑧
.

• Can be approximated with the LO splitting functions.

𝒇𝒒
𝑵𝑳𝑶−𝑴𝑹𝑾 𝒙, 𝒌𝒕

𝟐, 𝝁𝟐 =

 
𝒙

𝟏𝜶𝒔
𝑵𝑳𝑶 𝒌𝟐

𝟐𝝅
𝑻𝒒
𝑵𝑳𝑶−𝑴𝑹𝑾 𝒌𝟐, 𝝁𝟐 𝑷𝒒𝒒

𝑳𝑶 𝒛
𝒙

𝒛
𝒒𝑵𝑳𝑶

𝒙

𝒛
, 𝒌𝟐 𝚯 𝐳 − 𝟏 + 𝚫 + 𝑷𝒒𝒈

𝑳𝑶 𝒛
𝒙

𝒛
𝒈𝑵𝑳𝑶

𝒙

𝒛
, 𝒌𝟐 𝚯 𝝁𝟐 − 𝒌𝟐 𝒅𝒛

𝒇𝒈
𝑵𝑳𝑶−𝑴𝑹𝑾 𝒙, 𝒌𝒕

𝟐, 𝝁𝟐 =

 
𝒙

𝟏𝜶𝒔
𝑵𝑳𝑶 𝒌𝟐

𝟐𝝅
𝑻𝒈
𝑵𝑳𝑶−𝑴𝑹𝑾 𝒌𝟐, 𝝁𝟐 𝑷𝒈𝒈

𝑳𝑶 𝒛
𝒙

𝒛
𝒈𝑵𝑳𝑶

𝒙

𝒛
, 𝒌𝟐 𝚯 𝐳 − 𝟏 + 𝚫 + 

𝒒

𝑷𝒈𝒒
𝑳𝑶 𝒛

𝒙

𝒛
𝒒𝑵𝑳𝑶

𝒙

𝒛
, 𝒌𝟐 𝚯 𝝁𝟐 − 𝒌𝟐 𝒅𝒛

𝑻𝒒
𝑵𝑳𝑶−𝑴𝑹𝑾 𝒌𝟐, 𝝁𝟐 = 𝒆𝒙𝒑 − 

𝒌𝟐

𝝁𝟐 𝒅𝜿𝟐

𝜿𝟐
𝜶𝒔
𝑵𝑳𝑶 𝜿𝟐

𝟐𝝅
 
𝟎

𝟏

𝝃[𝐏𝐪𝐪
𝐋𝐎 𝝃 𝚯 𝝃 − 𝟏 + 𝚫 + 𝐏𝒈𝒒

𝐋𝐎 𝝃 ]𝐝𝝃

𝑻𝒈
𝑵𝑳𝑶−𝑴𝑹𝑾 𝒌𝟐, 𝝁𝟐 = 𝒆𝒙𝒑 − 

𝒌𝟐

𝝁𝟐 𝒅𝜿𝟐

𝜿𝟐
𝜶𝒔
𝑵𝑳𝑶 𝜿𝟐

𝟐𝝅
 
𝟎

𝟏

𝝃[𝐏𝐠𝐠
𝐋𝐎 𝝃 𝚯 𝝃 − 𝟏 + 𝚫 + 𝟐𝒏𝒇𝐏𝒒𝒈

𝐋𝐎 𝝃 ]𝐝𝝃
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DUPDFs 
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𝒇𝒒
𝑫𝑴𝑹𝑾 𝒙, 𝐳, 𝒌𝒕

𝟐, 𝝁𝟐 = 𝑻𝒒
𝑫𝑴𝑹𝑾 𝒌𝒕

𝟐, 𝝁𝟐
𝜶𝒔 𝒌𝒕

𝟐

𝟐𝝅
𝑷𝒒𝒒 𝒛 𝒇𝒒

𝒙

𝒛
, 𝒌𝒕

𝟐 𝚯 𝐳 − 𝟏 + 𝚫 + 𝑷𝒒𝒈 𝒛 𝒇𝒈
𝒙

𝒛
, 𝒌𝒕

𝟐

𝒇𝒈
𝑫𝑴𝑹𝑾 𝒙, 𝒛, 𝒌𝒕

𝟐, 𝝁𝟐 = 𝑻𝒈
𝑫𝑴𝑹𝑾 𝒌𝒕

𝟐, 𝝁𝟐
𝜶𝒔 𝒌𝒕

𝟐

𝟐𝝅
[𝑷𝒈𝒈 𝒛 𝒇𝒈

𝒙

𝒛
, 𝒌𝒕

𝟐 𝚯 𝐳 − 𝟏 + 𝚫 + 

𝒒

𝑷𝒈𝒒 𝒛 𝒇𝒒
𝒙

𝒛
, 𝒌𝒕

𝟐 ]

𝑻𝒒
𝑫𝑴𝑹𝑾(𝒌𝒕

𝟐, 𝝁𝟐) = 𝒆𝒙𝒑 − 𝒌𝒕𝟐
𝝁𝟐 𝐝𝜿𝒕

𝟐

𝜿𝒕
𝟐

𝜶𝒔(𝜿𝒕
𝟐)

𝟐𝝅
 𝟎
𝟏
𝒅𝝃𝑷𝒒𝒒

𝑳𝑶(𝝃)𝚯(𝟏 − 𝝃 − 𝚫)

𝑻𝒈
𝑫𝑴𝑹𝑾(𝒌𝒕

𝟐,𝝁𝟐) = 𝒆𝒙𝒑(− 𝒌𝒕𝟐
𝝁𝟐 𝐝𝜿𝒕

𝟐

𝜿𝒕
𝟐

𝜶𝒔 𝜿𝒕
𝟐

𝟐𝝅
 𝟎
𝟏
𝒅𝝃[𝝃𝑷𝒈𝒈

𝑳𝑶(𝝃)𝚯(𝟏 − 𝝃 − 𝚫)

𝚯(𝝃 − 𝚫) + 𝒏𝒇𝑷𝒒𝒈
𝑳𝑶(𝝃)])

(𝒛, 𝒌𝒕)-factorization framework 
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End
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