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Introduction Soliton solutions

Solitons: special role in classical physics as well as in quantum and
string theory, determining a richer structure of the full
non-perturbative regime:

originally used as “bounce solutions” to discuss the possible
instability of the pure Kaluza-Klein vacuum ground state;

generalizations of these soliton solutions have been also considered
in the analysis of the semiclassical stability of non-susy AdS gravity;

soliton configurations can turn out to be the lowest energy solution
with chosen boundary conditions, leading to a new kind of positive
energy conjecture;
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Introduction Soliton solutions

it is possible to consider configuration featuring Wilson loops:»
F �

¾
Aφ dφ � 0

with suitable fields periodicity boundary conditions;

under certain conditions, a soliton can be obtained through a double
Wick rotation of a BH solution

tÑ i t , φÑ iφ , pQ
Λ
Ñ iQ

Λ
q

BPS configurations preserving some of the supercharges can be
obtained analysing the explicit form of the Killing spinors
equations.
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The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms.

The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.

© Antonio Gallerati 5



The model Explicit solutions

We consider electrically charged solutions in a purely magnetic gauging. The
action has the explicit form:

S � 1
8πG

»
d4x

?�g
�
R

2
� 1

2
pBϕq2 � 3

L2 cosh

�c
2
3
ϕ

�
� 1

4
e
3
b

2
3 ϕ

�
F1
	2
� 1

4
e
�

b
2
3 ϕ

�
F2
	2
�

.

We will study this in the context of asymptotically AdS4 solutions of a truncation of
gauged N � 8 supergravity, and construct solutions of its T3 model truncation;

in the model we consider there are two Wilson lines,

Φ1
M �

»
F1 , Φ2

M �
»
F2 ,

and there is a one-parameter family of values of the Wilson lines which give
supersymmetric solitons;
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The model Explicit solutions

the explicit solution has the schematic form

ϕ � �ℓ�1 lnpxq , FΛµνpx, ΓΛq ,

ds2 � Υpxq
�
L2 dt2 � η2

fpxq dx
2 � fpxqdψ2 � L2 dz2



;

obtained from the old BH configuration by means of the double Wick rotation;

for special boundary conditions, can be found both susy and non-susy solutions

=ñ new kind of degeneracy of supersymmetric solutions;

=ñ surprisingly, there is a family of non-susy solutions of lower energy and free
energy than the susy ones.
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The model Thermodynamics, boundary conditions

The metric solution can represent different spacetimes, one for x P p0, 1q and the
other for x P p1,8q.

After a suitable change of coordinate x � xprq, the soliton energy parameter µ can be
then read-off from the asymptotic expansion of the metric:

gφφ � r2

L2 �
µ

r
�Opr�2q , µ � 	4L2

3η

�
3Q2

1 �Q2
2

	
;

We are interested in soliton solutions where the circle contracts in the interior of the
geometry at some position x0 where fpx0q � 0;

Regularity of the metric at x � x0 requiresφ P r0,∆s where

∆�1 �
���� 1
4πη

df

dx

����
x�x0

;
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The model Thermodynamics, boundary conditions

Solutions with non-zero charges have net magnetic fluxes at infinity

Φ1
M �

»
F1 �

¾
A1 �Q1∆

�
1� x�2

0

	
� 2πLψ1 ,

Φ2
M �

»
F2 �

¾
A2 �Q2∆

�
1� x2

0

	
� 2πLψ2 .

The scalar field induces a vev of an operator in the dual theory,

xOy � ϕ0 � �
?
6
2
πx0

��ψ2
1
�
1� 2x2

0
��ψ2

2
��

∆
.

From the boundary point of view, it is natural to parameterize solutions in terms of the
boundary data we hold fixed:


 fixed fluxes, holding fixedψ1 ,ψ2 ñ 0 to 2 sols;

 fixed charges, holding fixedQ1 ,Q2 ñ 0 to 4 sols.
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 fixed fluxes, holding fixedψ1 ,ψ2 ñ 0 to 2 sols;


 fixed charges, holding fixedQ1 ,Q2 ñ 0 to 4 sols.
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The model BPS solutions

It is possible to find soliton configurations preserving part of the supersymmetry
in our truncation of the maximal supergravity theory when

Q1 � � 1?
3
Q2 .

the above formulae are found imposing the vanishing of SUSY variations (Killing spinor
equations);

for fixed charge boundary conditions there are 2 distinct susy soliton configurations
(degeneracy of supersymmetric solutions);

for the same fixed charge boundary conditions, surprisingly a family of non-susy
solutions of lower energy and free energy than the supersymmetric ones can be found.
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The model Canonical
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The model Canonical
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Conclusions Distinctive features

1 We studied some soliton configuration in a gauged supergravity framework,
constructing solutions of its T3 model truncation.

2 In the model under consideration there are two Wilson lines, with a
one-parameter family of the latter which give supersymmetric solitons.

3 For supersymmetry-preserving fixed charge boundary conditions there are
two distinct soliton solutions.

4 The new solutions require amore in-depth study of the degeneracy of the susy
configurations in the presence of generic boundary conditions.

5 One branch of susy solutions has higher energy than a non-susy one with the
same boundary conditions.
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Thank you for listening!
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