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What is a charge asymmetry ?

It is the normalized difference of the t and t̄ differential distributions
integrated over the whole solid angle.

t

t̄
XX

θt
θt̄

Beam axis (z)
p p̄

In any reference frame we may define the total asymmetry by

A =

∫
d cos θ

Nt(cos θ)−Nt̄(cos θ)

Nt(cos θ) +Nt̄(cos θ)
=

∫
d cos θ

Nt(cos θ)−Nt(− cos θ)

Nt(cos θ) +Nt(− cos θ)
.
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What frame should we choose for the definition of A ?

A good choice
is the tt̄ center of mass frame because in this case the asymmetry can
be written using rapidity differences:

Att̄ =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, ∆y = yt − yt̄

and hence is invariant under boosts along the beam axis.

Recall:

y =
1

2
log

(
E + pL
E − pL

)
Remark: Charge asymmetry has here nothing to do with charge
non-conservation, it is only a consequence of the asymmetry of the
initial state.
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This observable has been measured at the TEVATRON:

CDF: Att̄ = 0.158± 0.075

mc@nlo: Att̄ = 0.058± 0.009

[arXiv:1101.0034v1]
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This observable has been measured at the TEVATRON:

D∅ : Att̄ = 0.092± 0.037

mc@nlo: Att̄ = 0.024± 0.007

[arXiv:1107.4995v1]
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CDF D∅
Exp. MC Exp. MC

Mtt̄ ≥ 450 GeV 0.475± 0.114 0.088± 0.013 0.115± 0.060 0.043± 0.013
Mtt̄ < 450 GeV −0.116± 0.153 0.040± 0.006 0.078± 0.048 0.013± 0.006
|∆y| ≥ 1 0.611± 0.256 0.123± 0.008 0.213± 0.097 0.063± 0.016
|∆y| < 1 0.026± 0.118 0.039± 0.006 0.061± 0.041 0.014± 0.006

Integrated 0.158± 0.075 0.058± 0.009 0.092± 0.037 0.024± 0.007

Some remarks:

A bigger than expected asymmetry is being seen by both
experiments.

CDF sees a strong dependence in Mtt̄ and ∆y while D∅ does not.

The integrated asymmetries are indeed bigger but not
incompatible with Monte Carlo (MC) simulations (. 2σ).

The bigger discrepancies (& 3σ) come from the CDF analysis in
the regions of high invariant mass Mtt̄ ≥ 450 GeV and high
rapidity differences |∆y| ≥ 1.

Only a ∼ 2σ deviation seems to be confirmed by both experiments.
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The computation of this observable has a long history:

QED calculation for e+e− → µ+µ− up to O(α).

[Berends, Gaemers, Gastmans, ’73], [Berends, Kleiss, Jadach, Was, ’83]

Calculation for hadron colliders up to O(αsα).

[Kühn, Rodrigo, ’98]

New (not present in the CDF and D∅ analysis) SM calculation up
to O(α2) and O(α2

sα).

[Hollik, Pagani, ’11]

With this project we would like to

get confident about the NLO calculation,

and see in what extend it could (should) be extended, e.g. with
generic couplings, full NNLO, etc.

I will only present here the details of the NLO QCD calculation and
show that a lot of simplifications are possible compared to a fully
differential NLO calculation.
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Since we are looking at an asymmetry we hope that some
simplifications will occur.

Att̄ ∝ N(∆y > 0)−N(∆y < 0)

∝
∫

dΦn(
√
s; p3, p4, ...)θ(∆y > 0)|M|2

−
∫

dΦn(
√
s; p3, p4, ...)θ(∆y < 0)|M|2

=

∫
dΦn(

√
s; p3, p4, ...)θ(∆y > 0)

[
|M|2 − (3↔ 4)

]
,

and we see that indeed only the antisymmetric (under momentum
exchange p3 ↔ p4) part of the amplitude squared |M|2 is needed.

Romain Müller tt̄ Asymmetry
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But what about the symmetric corrections that may appear in the
denominator ?

They are in fact not needed because the LO
contribution is symmetric !

Att̄ ∝ A(|M|2)

S(|M|2)
=

α3A1 + α4A2 +O(α5)

α2S0 + α3S1 + α4S2 +O(α5)

= α
A1

S0
+ α2A2S0 −A1S1

S2
0

+O(α3),

The O(α) symmetric corrections S1 appear only in the NNLO
calculation.

Remarks:

This is a general statement: NnLO symmetric contributions are
needed only in the Nn+1LO calculation.

As it is a NLO effect the asymmetry is expected to be small.
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To be more precise let us see what are the relevant Feynman diagrams
for the computation of the asymmetry from the qq̄ initial state.

Symmetric: The pieces containing the three gluons vertex.
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Symmetric: Initial-initial and final-final radiations.
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Asymmetric: Initial-final and final-initial radiations, and the
box-born interference.

Only these six cuts need to be explicitly calculated.
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To continue the calculation one should first compute the different
color structures:

≡ C1·

≡ C2·

Where the color factors C1 and C2 are given by:

C1 =
1

N2
C

tr
(
tatbtc

)
tr
(
tatctb

)
=

1

16N2
C

(f2
abc + d2

abc)

C2 =
1

N2
C

tr
(
tatbtc

)
tr
(
tatbtc

)
=

1

16N2
C

(f2
abc − d2

abc)
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It is possible to work out the properties of the amplitudes under the
transformations (3↔ 4) and (1↔ 2) to simplify further our
calculation.

For example we have:

3

4

2

11

2

3↔4−→

4

3

2

11

2

=

3

4

2

11

2

= −

3

4

2

11

2
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When all such symmetries are taken into account we finally see that
only two interference terms have to be computed :

α3
sR(1, 2, 3, 4, 5) ≡

α3
sV (1, 2, 3, 4) ≡

And then at O(α) we obtain the following expression for the
asymmetry:

Att̄ =
αs

σBorn

d2
abc

16N2
C

×
[∫

dΦ2V (1, 2, 3, 4) + 2

∫
dΦ3R(1, 2, 3, 4, 5)− (3↔ 4)

]
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The divergent structure is further simplified by antisymmetrising with
respect to the transformation (3↔ 4).

For example we have in the
soft limit:

R(1, 2, 3, 4, 5) ∝ p1 · p4

(p1 · p5)(p4 · p5)
|MBorn|2

The phase space integral over the gluon momentum p5 can be carried
out explicitly to obtain the FKS subtraction term:∫

dΦ3R(1, 2, 3, 4, 5) ∝
{

1

2ε2
− 1

ε

(
log

[
2p1 · p4

µ2

]
− 1

2
log

[
m2

t

µ2

])}
σBorn,

[Frixione, Kunszt, Signer, 96], [Frederix, Frixione, Maltoni, Stelzer, 09]

and we see that the antisymmetric combination∫
dΦ3 (R(1, 2, 3, 4, 5)−R(1, 2, 4, 3, 5)) ∝ 1

ε
log

[
2p1p4

µ2

]
σBorn

is free from soft-collinear ε−2 divergences.
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In few words:

Antisymmetric part only ⇒ many simplifications.

For example, the computation of the asymmetry from an qq̄ initial
state needs the explicit calculations of only two interferences:

V (1, 2, 3, 4) and R(1, 2, 3, 4, 5),

and moreover we have:

V (1, 2, 3, 4) is UV finite and hence no renormalization is needed.

Collinear divergences are symmetric.

→ The soft-collinear divergence ε−2 disappear.
→ The ε−2 IR divergence of the box born is symmetric.
→ One can simply use PDFs at LO.
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What about the LHC ?

While the pp initial state is symmetric it is
indeed possible to measure observables closely related to the charge
asymmetry Att̄ at the LHC by selecting suitable kinematic regions.

q have in average more
momentum than q̄.

Charge tends to continue
flowing: t will be produced
mostly in the direction of
the incoming q̄.

Boosting back to the lab
frame we see that

t̄ will be produced more
centrally than t.

q̄ q

t̄

t

q̄q

t̄

t

[Kühn, Rodrigo, ’98]

Define in the lab frame the central charge asymmetry:

Ac(yc) =
Nt(|y| ≤ yc)−Nt̄(|y| ≤ yc)
Nt(|y| ≤ yc) +Nt̄(|y| ≤ yc)

.
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[Kühn, Rodrigo, ’98]

Define in the lab frame the central charge asymmetry:

Ac(yc) =
Nt(|y| ≤ yc)−Nt̄(|y| ≤ yc)
Nt(|y| ≤ yc) +Nt̄(|y| ≤ yc)

.

Romain Müller tt̄ Asymmetry

http://arxiv.org/abs/hep-ph/9807420


Introduction
Details of the NLO QCD calculation

Conculsion

LHC
Summary

What about the LHC ? While the pp initial state is symmetric it is
indeed possible to measure observables closely related to the charge
asymmetry Att̄ at the LHC by selecting suitable kinematic regions.

q have in average more
momentum than q̄.

Charge tends to continue
flowing: t will be produced
mostly in the direction of
the incoming q̄.

Boosting back to the lab
frame we see that

t̄ will be produced more
centrally than t.

q̄ q

t̄

t

q̄q

t̄

t
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Summary:

CDF and D∅ are seeing a bigger than expected tt̄ charge
asymmetry.

But they disagree on the dependence of the asymmetry on the
parameters Mtt̄ and |∆y|.
Only a ∼ 2σ deviation compared to the SM calculations seems to
be really confirmed by both experiments.

With this project we would like to take a critical look to the
existing SM calculations.
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Outlook:

This calculation can be the starting point to extended
calculations that may be relevant for

BSM physics (Z’, t’, KK gluons, . . . ).
NNLO corrections.

Ultimately, the full NNLO QCD contributions to the asymmetry
will be needed.

→ Expected to be easier that the full differential calculation.

Thank you
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