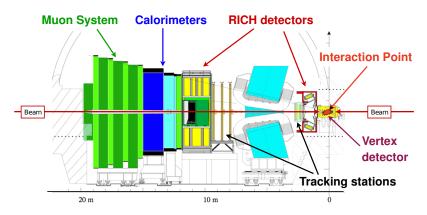


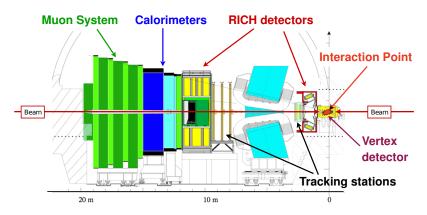
▲ロト ▲母ト ▲ヨト ▲ヨト 三国市 のへで

An Inquiry into the Nature and Distribution of Proton Partons


Nicola Chiapolini

Physik-Institut University of Zurich

PhD-Seminar ETHZ & UZH


August 29, 2011

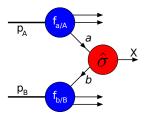
The LHCb Experiment: Proton Proton Collisions at 7 TeV

- pseudorapitidty: 1.9 $< \eta <$ 4.9 (ATLAS/CMS: $|\eta| \le$ 2.5)
- can look at low momentum μ : $p_{\mu} > 3 \,\text{GeV}$
- Luminosity: 37 pb⁻¹ (2010), ≈ 690 pb⁻¹ (2011)

The LHCb Experiment: Proton Proton Collisions at 7 TeV

- pseudorapitidty: 1.9 < η < 4.9 (ATLAS/CMS: $|\eta| \le$ 2.5)
- can look at low momentum μ : $p_{\mu} > 3 \,\text{GeV}$
- Luminosity: 37 pb⁻¹ (2010), ≈ 690 pb⁻¹ (2011)

Reality


3 / 20

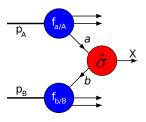
Summary

Scattering Process at LHC

cross-section calculation

- parton parton scattering described by perturbative QCD
- needs parton distribution functions
- parton distribution functions determined from measurements

$$\sigma_{AB\to X} = \int dx_a dx_b \cdot f_{a/A} f_{b/B} \cdot \hat{\sigma}_{ab\to X}$$


parton distribution function parton parton scattering

Summary

Scattering Process at LHC

cross-section calculation

- parton parton scattering described by perturbative QCD
- needs parton distribution functions
- parton distribution functions determined from measurements

$$\sigma_{AB\to X} = \int dx_a dx_b \cdot f_{a/A} f_{b/B} \cdot \hat{\sigma}_{ab\to X}$$

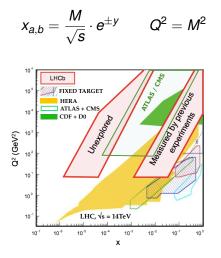
parton distribution function

parton parton scattering

Parton Distributions

depend on

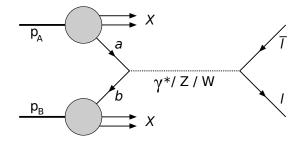
- momentum transfer Q²
- fraction of momentum carried by struck parton x_{a,b}
- not on process
- LHCb probes two distinct regions
- low x region so far only explored by HERA
- measurements evolved with DGLAP to higher Q²


$$x_{a,b} = rac{M}{\sqrt{s}} \cdot e^{\pm y}$$
 $Q^2 = M^2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

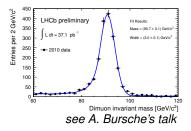
Parton Distributions

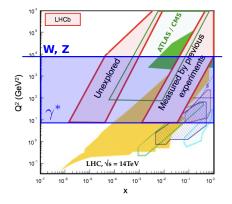
depend on


- momentum transfer Q²
- fraction of momentum carried by struck parton x_{a,b}
- not on process
- LHCb probes two distinct regions
- low x region so far only explored by HERA
- measurements evolved with DGLAP to higher Q²

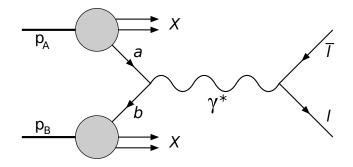
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Electroweak Cross-Section Measurements

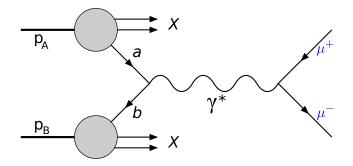

$$\sigma_{AB\to X} = \int dx_a dx_b \cdot f_{a/A} f_{b/B} \cdot \hat{\sigma}_{ab\to X}$$



◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで


Electroweak Cross-Section Measurements

- W,Z measurements presented at conferences
- photons allow to study large kinematic area



Drell-Yan Process

Look at μ final states only

Drell-Yan Process

Look at μ final states only

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Drell-Yan cross-section

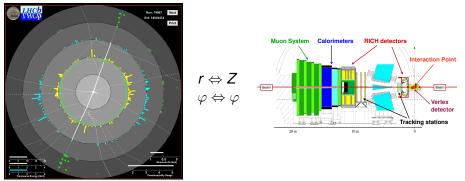
Goal: measure the Drell-Yan cross-section

• differentially in η and in different mass bins 5 - 10; 10 - 20; 20 - 40; 40 - 80 GeV

• with minimal use of Monte Carlo

We Need Following Ingredients

- Iuminosity
- acceptance
- efficiencies (trigger, tracking, ...)
- selection
- o purity
- theory predictions


fitting template functions to data

We Need Following Ingredients

- Iuminosity
- acceptance
- efficiencies (trigger, tracking, ...)
- selection
- purity
- theory predictions

fitting template functions to data

Drell-Yan Selection

- trigger on two μ (M > 2.5 GeV)
- require minimal momentum for $\mu = 10 \, \text{GeV}$
- select only good quality tracks and vertices

Summary

Drell-Yan Backgrounds

MisID

 \mathbf{K}, π identified as μ

- decay in flight
- punch through

Template Sources

- events with same sign μ
- minimum bias data

heavy quark

- μ from other process
 - mostly B- and D-meson decays
 - high impact parameters

Template Sources

- data with large impact parameter
- simulation

Summary

Drell-Yan Backgrounds

MisID

 ${\it K},\pi$ identified as μ

- decay in flight
- punch through

Template Sources

- events with same sign μ
- minimum bias data

heavy quark

- μ from other process
 - mostly B- and D-meson decays
 - high impact parameters

Template Sources

- data with large impact parameter
- simulation

・ロト・(型ト・(ヨト・(型ト・(ロト)))

Summary

Drell-Yan Backgrounds

MisID

 ${\it K},\pi$ identified as μ

- decay in flight
- punch through

Template Sources

- events with same sign μ
- minimum bias data

heavy quark

- $\boldsymbol{\mu}$ from other process
 - mostly B- and D-meson decays
 - high impact parameters

Template Sources

- data with large impact parameter
- simulation

Summary

Drell-Yan Backgrounds

MisID

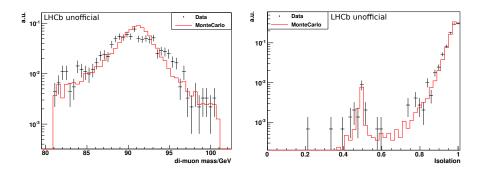
 ${\it K},\pi$ identified as μ

- decay in flight
- punch through

Template Sources

- events with same sign μ
- minimum bias data

heavy quark

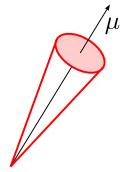

- $\boldsymbol{\mu}$ from other process
 - mostly B- and D-meson decays
 - high impact parameters

Template Sources

- data with large impact parameter
- simulation

Validating Signal MonteCarlo

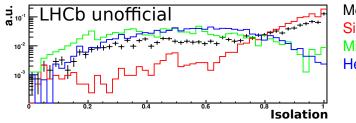
- choose known di-muon peak (Υ, Ζ)
- check mass peak
- look at variables of interest



◆□▶ ◆□▶ ▲目▶ ▲目▼ ろへ⊙

Isolation

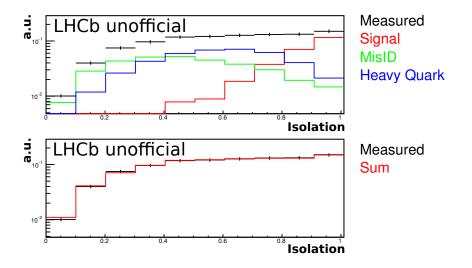
$$\text{Isolation} = \frac{P_{\text{T}}{}^{\mu - \text{in Jet}}}{P_{\text{T}}{}^{\text{full Jet}}}$$


- range: $0 \le$ Isolation ≤ 1
- signal: only μ in cone \Rightarrow peak at 1
- background: cone contains particles
 ⇒ broad distribution
- use minimum of both μ

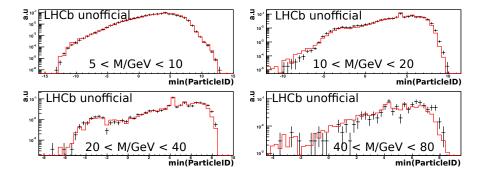
Jet-Finding: anti- k_T , R = 0.5

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Isolation Distributions



Measured Signal MisID Heavy Quark


Signal: Monte Carlo MisID: template from same sign events Heavy Quark: template from Monte Carlo

all distributions normalized to 1

Fitting the Distributions

Using Fractions from Isolation-Fit for ParticleID

ParticleID: log-likelihood for μ vs. π

First Approximate Results

- $\gamma \to \mu \mu$
- bins of invariant mass

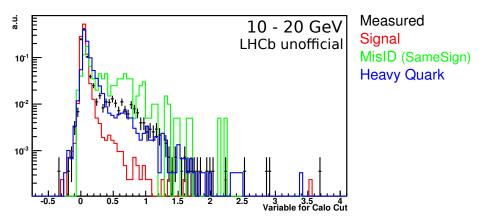
5-10 GeV 30443 events at 8.2% purity 10-20 GeV 7770 events at 32.1% purity 20-40 GeV 939 events at 72.5% purity 40-80 GeV 224 events at 99.7% purity

(Luminosity: 37 pb^{-1})

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

First Approximate Results

- $\gamma \to \mu \mu$
- bins of invariant mass


5-10 GeV 30443 events at 8.2% purity 10-20 GeV 7770 events at 32.1% purity 20-40 GeV 939 events at 72.5% purity 40-80 GeV 224 events at 99.7% purity

(Luminosity: 37 pb^{-1})

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Using Calorimeter Info

punch-through reduced substantially in W and Z analysis \Rightarrow try for Drell-Yan

Stability of Fits

bins	SameSign hqMC	SameSign hqData	MinBias hqMC	MinBias hqData
10	ok	almost	ok	problems
25	ok	almost	problems	problems
30	ok	almost	problems	problems

We were very lucky with the initial settings.

Adding trigger cuts limits the failing fits to lowest mass bin.

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Stability of Fits

bins	SameSign hqMC	SameSign hqData	MinBias hqMC	MinBias hqData
10	ok	almost	ok	problems
25	ok	almost	problems	problems
30	ok	almost	problems	problems

We were very lucky with the initial settings.

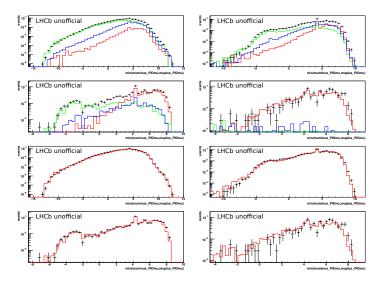
Adding trigger cuts limits the failing fits to lowest mass bin.

Stability of Fits

bins	SameSign hqMC	SameSign hqData	MinBias hqMC	MinBias hqData
10	ok	ok	almost	almost
25	ok	ok	almost	almost
30	ok	ok	ok	almost

We were very lucky with the initial settings.

Adding trigger cuts limits the failing fits to lowest mass bin.


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Summary

- LHCb measures Drell-Yan cross sections in unique pseudorapidity range
- provides important input for determination of parton distribution functions at low Bjorken-x
- able to produce first approximate results
- need to investigate several problems further

We hope to have results in the next few months.

Backup

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □