

Search of Standard Model Higgs decaying in two b

Pierluigi Bortignon ETH Zurich

29 August 2011

Outline

- Higgs search status
- Low mass Higgs at LHC

Outline

- Higgs search status
- Low mass Higgs at LHC
- Analysis strategy
 - Cut and Count
 - Multi Variate Analysis
- Control samples
- Systematics

Available on the CERN CDS information serve	r CMS PAS HIG II C
CMS Physics Ar	nalysis Summary
Contact: cms-pag-conveners-higgs@cern.ch	2011/08/27
Search for the Standard Moo Bottom Quarks and Produced Z Bo	del Higgs Boson decaying to d in Association with a W or a oson
The CMS C	ollaboration
Abs	tract
A search for the standard model Higgs b sponding to an integrated luminosity of proton-proton collisions at the LHC with ing modes are studied: $W(\mu\nu)H$, $W(e\nu)F$ Higgs decaying to $b\bar{b}$ pairs. 95% C.L. up tion are derived for a Higgs mass between	oson is performed in a data sample corre- 1.1 fb ⁻¹ , recorded by the CMS detector in a 7 TeV center-of-mass energy. The follow- $H, Z(\mu\mu)H, Z(ee)H$ and $Z(\nu\nu)H$, with the per limits on the VH production cross sec- 110 and 135 GeV. The expected (observed)

Outline

- Higgs search status
- Low mass Higgs at LHC
- Analysis strategy
 - Cut and Count
 - Multi Variate Analysis
- Control samples
- Systematics
- Results
- Conclusion

CMS Physics Analysis Summary
Contact: cms-pag-conveners-higgs@cern.ch 2011/08/2
Search for the Standard Model Higgs Boson decaying to Bottom Quarks and Produced in Association with a W or Z Boson
The CMS Collaboration
Abstract
A search for the standard model Higgs boson is performed in a data sample corre- sponding to an integrated luminosity of 1.1 fb ⁻¹ , recorded by the CMS detector in proton-proton collisions at the LHC with a 7 TeV center-of-mass energy. The follow- ing modes are studied: $W(\mu\nu)H$, $W(e\nu)H$, $Z(\mu\mu)H$, $Z(ee)H$ and $Z(\nu\nu)H$, with the Higgs decaying to $b\bar{b}$ pairs. 95% C.L. upper limits on the VH production cross sec- tion are derived for a Higgs mass between 110 and 135 GeV. The expected (observed) upper limit at 115 GeV is found to be 5.7 (8.3) times the standard model expectation.

Higgs search status

Low mass Higgs at LHC

Low mass Higgs at LHC

Low mass Higgs at LHC

Low mass Higgs at LHC

Low mass Higgs at LHC

Analysis techniques

Ingredients

H Boosted (Z/W)H Topolo

- pT(H)/pT(V)~200
- <u>Two central energy</u> <u>b-jets</u> back-to-ba <u>energetic collimat</u>
- Subjet/Filter Jet F three possible rep for pT(H) & m(H)
 - ★ 1 fatjet capturi
 - ★ 2 subjets resolv
 - ★ 3 filterjets reso plus gluon radia
- Main backgrounds
 ★ (Zbb)V (resona
 - ★ V+Jets
 - ★ ttbar

 $W \longrightarrow |v; Z \longrightarrow |^+|^-; Z \longrightarrow vv$

Higher level object

Mass resolution

Discriminating variables

Analysis strategy

Cut and Count

Variable	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$p_T(b_1)$	> 30	> 20	> 80
$p_T(b_2)$	> 30	> 20	> 30
$p_{\rm T}(jj)$	> 165	> 100	> 160
$p_{\rm T}({\rm V})$	> 160	> 100	-
CSV1	CSVT	CSVT	CSVT
CSV2	> 0.52	> 0.5	> 0.5
$\Delta \phi(V, H)$	> 2.95	> 2.90	> 2.90
Naj	= 0	< 2	-
Nal	= 0	-	= 0
pfMET	-	-	> 160
pfMETsig	-	-	>5
$\Delta \phi(\text{pfMET}, J)$	-	-	>1.5
M(jj)(110)	95-125	90-120	95-125
M(jj)(115)	100-130	95-125	100-130
M(jj)(120)	105-135	100-130	105-135
M(jj)(125)	110-140	105-135	110-140
M(jj)(130)	115-145	110-140	115-145
M(jj)(135)	120-150	115-145	120-150

Boost decision tree

Variable							
M(jj): dijet	M(jj): dijet invariant mass						
$Z(\ell \ell)$: dilep	oton invaria	nt mass; ir	ı				
$p_{\rm T}(jj)$: dijet	transverse 1	nomentur	n				
$p_{\rm T}({\rm V})$: vect	or boson tra	insverse m	omentum				
CSV1: max	(CSV1,CSV2	2)					
CSV2: min(CSV1,CSV2	.)					
$\Delta \phi(W,H)$: a	azimuthal a	ngle betwe	een V and	dijet			
$\Delta \eta$ (J1,J2); d	lifferent in η	1 between	Higgs dau	ghters			
N _{aj} : numbe	N_{aj} : number of additional central jets (in WH and $Z(\nu\nu)H$)						
TOmable	W(μν)Η	$W(e\nu)H$	Ζ(μμ)Η	Z(ee)H	$Z(\nu\nu)H$		
$p_{\mathrm{T}}(b_1)$	> 30	> 30	> 20	> 20	> 80		
$n_{\rm T}(h_{\rm T})$	> 30	> 30	> 20	> 20	> 20		

	C			-(11)2-	_()	-()
cele	$p_{\mathrm{T}}(b_1)$	> 30	> 30	> 20	> 20	> 80
pres	$p_{\mathrm{T}}(b_2)$	> 30	> 30	> 20	> 20	> 20
	$p_{\rm T}(jj)$	> 150	> 150	-/ /	/_/	> 160
	$p_{\rm T}({ m V})$	> 150	> 150	\	< -	- ~
	CSV1	> 0.40	> 0.40	> 0.50	> 0.50	> 0.50
	CSV2	> 0.40	> 0.40	> 0.50	> 0.50	> 0.50
	N _{aj}		41	< 2	< 2	-
	N _{al}	= 0	= 0	< - 🗸	> _	= 0
	$\Delta \phi(V, H)$	\ -//		> 2.4	> 2.4	-
	$\Delta \phi(\text{pfMET}, J)$		<u> </u>	-	-	> 0.5
	pfMETsig	$\left\langle \left\langle \left$	>2	_	-	> 5
	BDT	> 0.05	> 0.06	> -0.25	> 0.10	> -0.17

Three different control samples

V + LIGHT FLAVOUR

Variable	$W(\ell\nu)H$	$Z(\ell\ell)H$
$p_{\mathrm{T}}(b_1)$	> 30	> 20
$p_{\mathrm{T}}(b_2)$	> 30	> 20
$p_{\rm T}(jj)$	> 150	> 100
$p_{\rm T}({ m V})$	> 150	> 100
CSV1	.not.CSVM	.not.CSVL
CSV2	.not.CSVM	.not.CSVL
$N_{ m aj}$	< 2	< 2
pfMETsig	> 2.5	_

TTBAR

Variable	$W(\ell \nu)H$	$Z(\ell\ell)H$
$p_{\mathrm{T}}(b_1)$	> 30	> 20
$p_{\mathrm{T}}(b_2)$	> 30	> 20
$p_{\rm T}(\rm jj)$	> 100	> 0
$p_{\rm T}({\rm V})$	> 100	> 0
CSV1	CSVT	CSVT
N _{aj}	> 1	> 1
pfME1	_	> 50
$M_{\ell\ell}$	_	> 120

V + HEAVY FLAVOUR

Variable	$W(\ell \nu)H$	$Z(\ell \ell)H$
$p_{\mathrm{T}}(b_1)$	> 30	> 20
$p_{\rm T}(b_2)$	> 30	> 20
$p_{\rm T}(jj)$	< 150	-
$p_{\rm T}({\rm V})$	< 150	-
$M_{ m T}$	[40, 120]	-
CSV1	CSVT	CSVT
CSV2	-	CSVT
$\Delta \phi(V, H)$	-	> 2.9
Naj	= 0	< 2
pfMÉT	-	< 30
pfMETsig	> 2.5	-
M(jj)	-	< 100 > 140

ZNuNu CASE

- remove muons from ZMuMu data and re-reconstruct the event
 - reweighted for branching ratio and acceptance
- Z+HF
 - Veto higgs mass 100-140
- Ttbar
 - require btag
- W+jets
 - veto bjets

V + LIGHT FLAVOUR

TTBAR

V + HEAVY FLAVOUR

Main Systematics

- Luminosity : 4.5%
- Backgorund estimate :
 - VHbb 20%
 - singleTop, VV 30%
- Btagging : 10% / jet
 - Two btagged jet : 20 % total
- MET + Jets trigger : 5%
- Jet energy resolution : 10%
- Signal QCD corrections: 10%
- Higgs Pt shape : 10%

TOTAL:

- signal : 27%
- background : 20%

Results

BDT Analysis

Cut and Count Analysis

Colour connection

- Dominant background ZHbb channel is Zgbb
- Signal ZHbb:
 - Higgs colour singlet object
 - Γ(H) << Γ(QCD)
 - The bs of the Higgs can "talk"
 ONLY between each other
- Background Zgbb:
 - Gluon coloured object
 - The bs of the gluons "talk"
 with all the event (beams)

Gallicchio, Schwartz PRL 105, 022001 (2010)

Pull vector

- Angle wrt JJ dir:

$$\Delta \theta_t = \theta_t - \theta_{JJ}$$

Properties of pull:

- Infrared safe
- Collinear safe
- Boost invariant

Pull angle

Conclusion

- Low Higgs search at LHC is feasible... actually done!
- Good control on backgrounds for all channels with CS
- Very conservative approach on systematics
- No significant excess found (yet...)

IMPROVEMENTS

- Add more discriminating variables:
 - Colour flow
 - Good Ideas...?

Conclusion

- Low Higgs search at LHC is feasible... actually done!
- Good control on backgrounds for all channels with CS
- Very conservative approach on systematics
- No significant excess found (yet...)

IMPROVEMENTS

- Add more discriminating variables:
 - Colour flow
 - Good Ideas...?

ZNuNu case

MVA analysis

MVA analysis

Helicity angle CMS simulation

Signal-background shape comparison

MVA analysis

Lower level objects

Full particle flow analysis

- PV and PU treatment
 - \cdot DA algo used for PV
 - PFnoPU (CHS)
 - \cdot Fastjet subtraction

Electrons

- Isolated
- Zee:
 - WP95
 - $\cdot P_t > 20 \text{ GeV/c}$
- Wenu
 - WP80
 - $\cdot P_t > 30 \text{ GeV/c}$
- $\cdot |\eta| < 2.5$ (gap regions excluded)
- Muons
 - \cdot Isolated
 - $\cdot P_t > 20 \text{ GeV/c}$
 - $|\eta| < 2.4$

- Jets
 - \cdot AK5 clustering algo
 - ۰ZLL
 - $\cdot P_t > 20 \text{ GeV/c}$
 - WLNu / ZNuNu
 - $P_t > 30 \text{ GeV/c}$ • $|\eta| < 2.5$
- B-Tagging
 - Combined secondary vertex tagger (IP+SV info)
 CSVT : 0.898
 CSVM : 0.679
 - CSVM : 0.879

• MET

Results

1

					\ \		
	MUNUNUS	110 GeV	115 GeV	120 GeV	125 GeV	130 GeV	135 GeV
	W + udscg	0.095	0.071	0.058	0.045	0.061	0.095
1	Wbb	1.047	0.989	0.951	0.846	0.733	0.671
	Z+jets	0.168	0.174	0.006	0.238	0.238	0.238
	tī	0.981	0.928	1.068	1.095	0.982	1.012
	Single Top	0.202	0.173	0.194	0.201	0.234	0.152
	VV	0.247	0.155	0.040	0.021	0.018	0.009
	Bern	2.740	2.490	2.316	2.446	2.266	2.176
	S	0.384	0.367	0.307	0.242	0.193	0.146
	Nobe	2	3	4	4	3	3
		-/			-		
	NEcess	110 GeV	115 GeV	120 GeV	125 GeV	130 GeV	135 GeV
	$W \pm udsco$	0.068	0.030	0.032	0.014	0.012	0.038
	Whh	0 507	0 403	0.367	0.361	0.312	0 259
	Z+iets	0.007	0.403	0.907	0.001	0.512	0.207
	±1	1 015	0.171	0.802	0 884	1 030	0 843
	Single Top	0.125	0.088	0.002	0.150	0.186	0.010
	VV	0.125	0.069	0.049	0.043	0.100	0.041
		2 052	1 525	1 355	1 451	1 585	1 453
	S	0.297	0.329	0.231	0.216	0.158	0.140
	Naha	4	4	1	1	0.100	0.110
_		-	-	-	-	°	0
	ZMUINESS	110 GeV 1	15 GeV 12	0 GeV 125 C	eV 130 GeV	/ 135 GeV	-
	Z + udscg	0.08	0.09	0.08 0.0	8 0.08	0.08	
	Zbb	2.51	2.55	2.71 2.6	1 2.51	2.61	
	$t\bar{t} + ST$	0.06	0.12	0.16 0.1	6 0.22	0.21	
	VV	0.27	0.17	0.08 0.0	4 0.02	0.01	_
	B_{exp}	2,93	2.93	3.05 2.8	9 2.84	2.92	
	S	0.26	0.23	0.19 0.1	6 0.13	0.09	-3
	Nots	3	3	3 3	2	3	-
	Ztotess 1	110 GeV 11	.5 GeV 120)GeV 125G	eV 130 GeV	7 135 GeV	_
	Z + udscg	0.08	0.17 0	0.08 0.17	0.17	0.25	
	Zbb	1.92	2.03 1	.92 2.14	1 2.03	1.58	
	tt +ST	0.28	0.23 0	0.23 0.22	2 0.17	0.17	
		0.22	$\frac{0.16}{2.50}$ 2	0.09 0.06	$\frac{0.04}{0.04}$	0.02	_
	Bexp	2.50	$\frac{2.59}{0.10}$ 2	15 0.10	2.40	1./4	_
	<u> </u>	1.22	0.19 0	$\frac{0.13}{2}$ 0.13	<u> </u>	0.08	_
	¹ vobs	T	4	ے ک	3	4	_

-

	Frocess	110 GeV	115 GeV	120 GeV	125 GeV	130 GeV	135 GeV
NUM	+ udscg	0.02	0.02	0.02	0.02	0.01	0.01
	Wbb+ tt	1.99	1.37	2.15	2.41	2.48	2.23
Z	+ udscg	0.15	0.17	0.14	0.13	0.12	0.12
	Zbb	1.88	1.99	1.70	1.71	1.70	1.73
Si	ingle Top	0.51	0.47	0.52	0.42	0.58	0.42
	VV	1.31	1.20	0.22	0.12	0.08	0.07
	Bexp	6.15	6.05	4.75	4.80	4.87	4.61
	S	0.70	0.53	0.51	0.44	0.35	0.26
	Nobs	6	6	5	5	6	5
	1						

BD Process	$W(\mu\nu)H$	W(ev)H	$Z(\mu\mu)H$	Z(ee)H	$Z(\nu\nu)H$
W + udsc	g 0.659	0.692	0	0	0.00
Wbb	2.516	2.08	0	0	0.01
Z + udscg	5 O	0	2.21	2.20	0.07
Zbb	0.006	0.191	15.1	11.7	1.19
tī	1.052	1.979	2.21	2.18	0.61
Single Top	0.526	0.267	-	-	0.47
VV	0.376	0.518	1.23	0.71	0.50
QCD	0	0	0	0	0
Bexp	5.136	5.731	20.75	16.79	2,39
S(110)	0.604	0.485	0.73	0.54	0.60
S(115)	0.640	0.519	0.64	0.47	0.49
S(120)	0.484	0.407	0.55	0.40	0.39
S(125)	0.345	0.330	0.43	0.31	0.33
S(130)	0.245	0.236	0.32	0.22	0.23
S(135)	0.149	0.160	0.22	0.15	0.16
N _{obs}	7	9	26	10	1

	$M_{\rm H}({\rm GeV})$	Expected	Observed
	110	8.1	7.4
Combining all	115	8.0	8.3
	120	10.1	10.8
the channels	125	12.2	13.0
	130	17.3	1201
	135	25.2	29.0