-					

ション ふゆ マ キャット しょう くりく

Summary

Combining NLO corrections to production and decay in the WH process Zurich PhD seminar

Julián Cancino, in collaboration with Andrea Banfi

Institute for Theoretical Physics, ETH Zurich

August 30, 2011

Event generato

Results

Summary

Introduction

Boosted object analysis

Event generator

Results

Summary

Introduction

Boosted object analysis

Event generato

Summary

Why Higgsstrahlung?

- Low mass Higgs boson preferred ⇒ decays mostly to bottom quark pair.
- Issue : huge dijet background
 ⇒ look for boosted Higgs
 boson in Higgsstrahlung.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆○

Search strategy

Jet substructure of fat jets

Seymour '94 Butterworth, Cox, Forshaw '08 Butterworth, Davison, Rubin, Salam '08

Boosted Higgs boson $(p_T \gg m_H)$ decaying to bottom quark pair:

$$\Delta R_{bar{b}} = \sqrt{(\Delta y_{bar{b}})^2 + (\Delta arphi_{bar{b}})^2} \simeq rac{1}{\sqrt{z(1-z)}}rac{m_H}{p_{T,H}}$$

 \Rightarrow Higgs decay products end up in one fat jet.

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Procedure

- 1. Apply Cambridge/Aachen jet algorithm with parameter R to recombine protojets \rightarrow jets J.
- 2. For each jet $j \in J$:
 - 2.1 Decluster : $j \leftarrow (j_1, j_2)$ with $m_{j_1} > m_{j_2}$.
 - 2.2 Selection :
 - If Massdrop: $m_{j_1} < \mu m_j$ and Symmetric splitting $\min(p_{T,j_1}^2, p_{T,j_2}^2) \Delta R_{j_1 j_2} > y_{cut} m_j^2$, Then j is a candidate and exit the loop, Else go to step 2.1 with j_1 .
- 3. B-tagging : if j_1 and j_2 have b-tags, set $\Delta R_{b\bar{b}} = \Delta R_{j_1j_2}$.

In the analysis : R = 1.2, $\mu = 0.67$ and $y_{cut} = 0.15$.

	-				

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□ ◆ ○ ◆

Filtering

To reduce contamination from underlying event, the following filtering procedure is then applied :

- Redo clustering on the parents protojets of the candidate jet using $R_{filt} < R : j'_1, ..., j'_n$ ordered by p_T .
- If j'_1 and j'_2 have b-tags,

Then return the invariant mass of the sum of $j'_1 + j'_2(+j'_3)$, Else return 0.

In the analysis, $R_{filt} = \min(0.3, \Delta R_{b\bar{b}}/2)$.

Introduction	Boosted object analysis	Event generator	Results	Summary

Motivation

- So far only checked with LO shower MC and MC@NLO for initial state radiation.
- Hard initial state QCD radiation effects in NNLO WH production for Higgs decay into bottom quarks at LO can be studied.

Ferrera, Grazzini, Tramontano '11

ション ふゆ マ キャット しょう くりく

- What about stability against final state radiation?
- \Rightarrow we study production and decay at NLO.

うつん 川川 スポット エット 人口 ア

NLO Monte-Carlo

- The calculation is split in the channels:
 - LO production \otimes LO+NLO decay

• NLO qq production \otimes LO decay

• NLO qg production \otimes LO decay

Introduction	Boosted object analysis	Event generator	Results	Summary

Virtual

- Dimensional regularization : $d = 4 2\varepsilon$
- Reduction to master integrals
- Evaluation of master integrals through Feynman parametrization and Wick rotation

ション ふゆ く は く は く む く む く

• \Rightarrow Laurent series in ε

(=) (

Real

• Phase space parametrization to factorize singular propagators

$$\omega = \frac{\sqrt{s_{12}}}{2} (1-z) \qquad \lambda = \frac{1-\cos\vartheta}{2}$$
$$\rightarrow |\mathcal{M}|^2 d\Phi \sim \frac{F(z,\lambda)}{(1-z)^{1-2\varepsilon}\lambda^{1+\varepsilon}(1-\lambda)^{1+\varepsilon}}$$

- Partial fractioning
- Expansion in +-distributions

$$\frac{1}{x^{1+\varepsilon}} = -\frac{1}{\varepsilon}\delta(x) + \left(\frac{x^{-\varepsilon}}{x}\right)_{+}$$
$$\int_{0}^{1} dx \left(\frac{x^{-\varepsilon}}{x}\right)_{+} f(x) = \int_{0}^{1} dx \, x^{-\varepsilon} \frac{f(x) - f(0)}{x}$$

• \Rightarrow Laurent series in ε

Introduction	Boosted object analysis	Event generator	Results	Summary

- Local substraction of singularities
- \Rightarrow Fully exclusive NLO MC (with stable W)
- Checked against inclusive WH NLO production cross section Brein, Djouadi, Harlander '03

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへぐ

Introduction	Boosted object analysis	Event generator	Results	Summary

Analysis details

- Preliminary!
- Collider : LHC at $\sqrt{s} = 7 \text{ TeV}$
- PDFs : CTEQ6M, no PDF uncertainty
- Numerical integration : VEGAS from CUBA library Hahn '05
- Scales : $m_H = 120 \text{ GeV}, m_b = 4.24 \text{ GeV}, \mu_R^P = \mu_F^P = m_W + m_H, \mu_R^D = m_H.$
- W boson stable
- Interfaced with FastJet

Cacciari, Salam, Soyez '06

うつん 川川 スポット エット 人口 ア

Control distribution : W rapidity (inclusive)

◆□▶ ◆□▶ ◆□▶ ◆□▶ - 亘 - のへぐ

Control distribution : W transverse momentum (inclusive)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Higgs candidate transverse momentum (inclusive)

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへで

Higgs candidate transverse momentum (inclusive)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Higgs candidate transverse momentum (inclusive)

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへで

Higgs candidate invariant mass (inclusive)

◆□▶ ◆□▶ ◆□▶ ◆□▶ - 亘 - のへ⊙

Higgs candidate invariant mass (inclusive)

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへで

Higgs candidate invariant mass (inclusive)

▲ロト ▲圖ト ▲画ト ▲画ト 三連 - のへで

Higgs candidate invariant mass (inclusive)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Higgs candidate transverse momentum $(p_T(W) \ge 200 \text{ GeV})$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 題 ― のへで

Higgs candidate transverse momentum $(p_T(W) \ge 200 \text{ GeV})$

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへで

Higgs candidate transverse momentum $(p_T(W) \ge 200 \text{ GeV})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○

Higgs candidate invariant mass $(p_T(W) \ge 200 \text{ GeV})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ のへで

Higgs candidate invariant mass $(p_T(W) \ge 200 \text{ GeV})$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三連 - のへで

Higgs candidate invariant mass $(p_T(W) \ge 200 \text{ GeV})$

▲ロト ▲圖ト ▲画ト ▲画ト 三連 - のへで

Higgs candidate invariant mass $(p_T(W) \ge 200 \text{ GeV})$

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへで

Introduction B	oosted object analysis	Event generator	Results	Summary

- Preliminary study of the effect of initial and final state radiation on the boosted jet analysis at NLO for the WH process with decay to bottom quarks : Procedure is stable against NLO corrections.
- Perspectives :
 - Include leptonic decay of the W boson and realistic cuts
 - Include ZH channel with charged-lepton decay and cuts

うつん 川川 スポット エット 人口 ア

- Program structure adapted for extensions :
 - Interface with parton shower
 - Hadronic decay of W and Z bosons
 - Inclusion of NNLO Higgstrahlung production
 - Inclusion of NNLO Higgs boson decay