FLUKA benchmark study of radiation environment inside CMS cavern

Christina Urscheler Radiation Protection Group CERN

Introduction

Monte Carlo simulation study of radiation environment in CMS cavern

Comparison of selected results to measured data from 2010 and 2011

Overview

Definitions FLUKA Monte Carlo Code FLUKA results Benchmark Conclusion

Definitions:

Tracklength / [cm]:

Distance, a particle covers in a certain volume

Fluence / [cm-2]:

Tracklength density

Definitions:

Tracklength / [cm]:

Distance, a particle covers in a certain volume

Fluence / [cm-2]:

Tracklength density

Dose equivalent / [Sv]:

Energy deposition in tissue weighted with biological damage factors depending on particle type and energy

By National Institute of Radiological Sciences http://www.nirs.go.jp/ENG/index.html

FLUKA – a Monte Carlo code

- Fully integrated Monte Carlo code
- Applications
 - Shielding calculations
 - Prompt and residual radiation
 - Dosimetry
 - Medical physics
 - Etc.

• Collaboration: CERN, DKFZ & HIT Heidelberg, NASA etc.

Pictures by SimpleGeo

FLUKA calculation parameters

- Production thresholds:
 - Neutrons: thermal energies (1E-5 eV)
 - Electrons, positrons: 1 MeV
 - Photons: 100 keV
 - Hadronic particles (except neutrons): 100 keV
- Biasing in certain parts of CMS
- Calculation time: ~ 300 400 sec/pp-collision

CMS geometry in FLUKA

X

FLUKA results

total integral fluence during LHC operation / [cm⁻²]

FLUKA results:

Neutron and Photon relative contribution to total fluence

x A

Neutrons / all particles

Photons / all particles

2.4e-01 3.1e-01 3.9e-01 4.7e-01 5.4e-01 6.2e-01 7.0e-01 7.7e-01 8.5e-01 9.2e-01 1.0e+00

2.0e-01 2.8e-01 3.5e-01 4.3e-01 5.0e-01 5.8e-01 6.6e-01 7.3e-01 8.1e-01 8.9e-01 9.6e-01

FLUKA results:

x

Ζ

Dose equivalent rate during LHC operation / [uSv/ppcollision]

2.3e-11 1.2e-10 6.1e-10 3.2e-09 1.6e-08 8.5e-08 4.4e-07 2.3e-06 1.2e-05 6.2e-05 3.2e-04

1.0e-11 5.2e-11 2.7e-10 1.4e-09 7.2e-09 3.8e-08 1.9e-07 1.0e-06 5.2e-06 2.7e-05 1.4e-04 uSv/pp collision

Comparison of simulation results to measured data

Ionization Chamber (PMI) used in CMS

Filling gas:

air at atmospheric pressure

Active volume:

3 liter

Range:

5 uSv/h to 500 mSv/h

fields; H. Vincke et al.

Location of ionization chambers (PMI) in CMS:

PMI responses on CASTOR side / [10⁻²¹C/pp-collision] :

PMI responses on CASTOR side / [10⁻²¹C/pp-collision] :

PMI responses on CASTOR side / [10⁻²¹C/pp-collision] :

PMI responses non CASTOR side / [10⁻²¹ C/pp-collision] :

Z

PMI responses at interaction point / [10⁻²¹ C/pp-collision] :

Measured

Data

(10⁻²¹ C/pp)

100% error

0.7 +- 70%

Z

PMI responses at interaction point / [10⁻²¹ C/pp-collision] :

Data 2011 Simulation Results / Data 2010 resp. 2011

	PMI5501	PMI5511	PMI5512	PMI5513	PMI5521	PMI5522	PMI5531
Ratio 2010	1.3	1.8	2.4	1.4	1.3	1.8	4.4
	+- 6%	+- 4%	+- 10%	+- 5%	+- 3%	+- 3%	+- 71%
Ratio 2011	1.2	1.7	2.1	1.2	1.1	1.5	3.5
	+- 4%	+- 2%	+- 4%	+- 6%	+- 3%	+- 6%	+- 6%

Conclusion

- Radiation field in CMS cavern is dominated by neutrons and photons
- MC simulation shows substantial influence of castor on the radiation field in CMS cavern
- Benchmark shows a general overestimation of ionization chamber response by MC simulation

BACKUP SLIDES

- Contribution of neutrons and photons to total particle track length in CMS cavern

- Error maps
- particle spectra at different PMI positions
- integrated response by each particle at different PMI positions

Ratio total track length / Sum(Neutron + Photon TL)

9.5e-01 9.6e-01 9.6e-01 9.7e-01 9.7e-01 9.8e-01 9.8e-01 9.9e-01 9.9e-01 1.0e+00 1.0e+00

9.5e-01 9.5e-01 9.6e-01 9.6e-01 9.7e-01 9.7e-01 9.8e-01 9.8e-01 9.9e-01 9.9e-01 1.0e+00

Relative Errors on integral fluence

and dose equivalent rate

 Rel. Err of dose equivalent
Rel. Err of integral fluence: rate:

Particle Spectra @ Castor side

neutron-spectra

Particle Spectra @ non Castor side

neutron-spectra

Integral Response @ Castor side

- ----- positive_pion-response
- negative_pion-response

Integral Response @ non Castor side

negative_muon-response positive_pion-response negative_pion-response

Integral Response @ IP

neutron-response

Calculated response function of PMI detector

cavern; Ch. Theis et al.

Location of ionization chambers (PMI):

8 PMI chambers inside CMS cavern

