Search for $B^0_s \to \mu \mu$ and $B^0_d \to \mu \mu$ at the CMS experiment

Christoph Nägeli PSI & ETH

August 30, 2011

Overview

Introduction

Analysis

Event Selection Variables Isolation Normalization channel Control sample Background estimation

Results

Upper limits Outlook

Introduction

- Decay is highly suppressed in SM.
 - effective FCNC, helicity suppressed.
 - SM expectation

 $egin{split} {\cal B}(B^0_s o \mu\mu) &= (3.2 \pm 0.2) imes 10^{-9} \ {\cal B}(B^0_d o \mu\mu) &= (1.0 \pm 0.1) imes 10^{-10} \end{split}$

- CMS can constrain BSM directly and indirectly
 - MSSM: $\mathcal{B} \propto (\tan \beta)^6$
 - ▶ Cabibbo-enhancement $(|V_{ts}| > |V_{td}|)$ of $B_s^0 \to \mu\mu$ over $B_d^0 \to \mu\mu$ only in MFV models.
 - \mathcal{B} could also be smaller than SM prediction.
 - ightarrow Constraints on parameter region
 - \rightarrow Sensitivity to extended Higgs boson sectors

CMS Detector

Component	Characteristics	resolutions	
Pixel	3/2 Si layers	$\delta_z \approx 20 \ \mu \text{m}, \ \delta_\phi \approx 10 \ \mu \text{m}$	
Tracker	10/12 Si strips	$\delta(p_{\perp})/p_{\perp} \approx 1\%$	
ECAL	PbWO ₄	$\delta E/E \approx 3\%/\sqrt{E} \oplus 0.5\%$	
HCAL (B)	Brass / Sc, $> 7.2\lambda$	$\delta E/E \approx 100\sqrt{E}\%$	
HCAL (F)	Fe/Quartz	$\delta(slashE_T) \approx 0.98 \sqrt{\sum E_T}$	
Magnet	3.8 T solenoid		
Muons	DT / CSC + RPC	$\delta(p_{\perp})/p_{\perp} \approx 10\%$ (STA)	

Analysis overview

- Signal signature
 - two muons from one decay vertex
 - dimuon mass around
 (5.2002 + 0.0000)

 $m_{B^0_s} = (5.3663 \pm 0.0006) \,\, {
m GeV}$

Background composition

- two independent semileptonic B decays
- one semileptonic (B) decay and one misidentified hadron
- rare single B decays (peaking and non-peaking)
- Most powerful variables
 - Isolation of B candidate
 - good vertex fit
 - small pointing angle
 - ▶ high flight length significance ℓ_{3d}/σ_{3d}
 - *d_{ca}* of closest track near SV

• Measure the branching fraction $B^0_{s(d)} \rightarrow \mu \mu$

$$\mathcal{B}(B^0_s \to \mu\mu) = \frac{N(B^0_s \to \mu\mu)}{N(B^0_s)} = \frac{N(B^0_s \to \mu\mu)}{f_s \sigma_b \mathcal{L}} = \frac{N^{\rm obs}(B^0_s \to \mu\mu)}{\varepsilon^{B^0_s} f_s \sigma_b \mathcal{L}}$$

• Measure the branching fraction $B^0_{s(d)} \rightarrow \mu \mu$

$$\mathcal{B}(B^0_s \to \mu\mu) = \frac{\mathcal{N}(B^0_s \to \mu\mu)}{\mathcal{N}(B^0_s)} = \frac{\mathcal{N}(B^0_s \to \mu\mu)}{f_s \sigma_b \mathcal{L}} = \frac{\mathcal{N}^{\rm obs}(B^0_s \to \mu\mu)}{\varepsilon^{B^0_s} f_s \sigma_b \mathcal{L}}$$

 Replace σ_bL using a well measured branching fraction with similar signal topology

▶ Measure the branching fraction $B^0_{s(d)} \rightarrow \mu\mu$ using a normalization channel

$$\mathcal{B}(B^0_s \to \mu\mu; 95\%C.L.) = \frac{\mathcal{N}(n_{obs}, n_B)}{\mathcal{N}(B^{\pm} \to J/\psi K^{\pm})} \frac{f_u}{f_s} \frac{\varepsilon^{B^{\pm}}}{\varepsilon^{B^0_s}} \mathcal{B}(B^{\pm} \to J/\psi(\mu^+\mu^-) K^{\pm})$$

▶ Measure the branching fraction $B^0_{s(d)} \rightarrow \mu \mu$ using a normalization channel

$$\mathcal{B}(B^0_s \to \mu\mu; 95\%C.L.) = \frac{N(n_{obs}, n_B)}{N(B^{\pm} \to J/\psi K^{\pm})} \frac{f_u}{f_s} \frac{\varepsilon^{B^{\pm}}}{\varepsilon^{B^0_s}} \mathcal{B}(B^{\pm} \to J/\psi(\mu^+\mu^-)K^{\pm})$$

• $B^{\pm} \rightarrow J/\psi K^{\pm}$ has similar decay topology and is well measured.

▶ Measure the branching fraction $B^0_{s(d)} \rightarrow \mu\mu$ using a normalization channel

$$\mathcal{B}(B^0_s \to \mu\mu; 95\%C.L.) = \frac{\mathcal{N}(n_{obs}, n_B)}{\mathcal{N}(B^{\pm} \to J/\psi K^{\pm})} \frac{f_u}{f_s} \frac{\varepsilon^{B^{\pm}}}{\varepsilon^{B^0_s}} \mathcal{B}(B^{\pm} \to J/\psi(\mu^+\mu^-) K^{\pm})$$

- $B^{\pm} \rightarrow J/\psi K^{\pm}$ has similar decay topology and is well measured.
- Systematics on efficiencies affect the signal and normalization channel in similar way, hence should largely cancel.

Event selection

- Vertexing pairs of muons and fill in histogram
- Blind analysis: Everything of the analysis was set before looking at the number of entries in the signal region.
 - $\Rightarrow~$ No signal candidates were reconstructed in the mass range $5.2\,GeV < m_{\mu\mu} < 5.45\,GeV$
 - Avoid bias
 - Avoid overtuning
 - Tradition in field
- Sideband was used to study the background in data.

• pointing angle
$$\alpha(\vec{P}_B, \vec{SV} - \vec{PV})$$
.

• pointing angle
$$\alpha(\vec{P}_B, \vec{SV} - \vec{PV})$$
.

▶ flight length in three-dimensional space (ℓ_{3d}) and its error (σ_{3d}) .

• pointing angle
$$\alpha(\vec{P}_B, \vec{SV} - \vec{PV})$$
.

- ▶ flight length in three-dimensional space (ℓ_{3d}) and its error (σ_{3d}) .
- χ^2 of secondary vertex fit.

• pointing angle
$$\alpha(\vec{P}_B, \vec{SV} - \vec{PV})$$
.

- ▶ flight length in three-dimensional space (ℓ_{3d}) and its error (σ_{3d}).
- χ^2 of secondary vertex fit.
- Isolation (see next slide).

Isolation

Isolation (1) defined as

$$I = rac{p_\perp(B_s^0)}{p_\perp(B_s^0) + \sum_{\mathrm{trk}} p_\perp},$$

where the sum over tracks in cone around \vec{p}_B with track

- not part of the B_s^0 candidate
- ▶ from same PV as the B⁰_s candidate or close to secondary vertex.

Normalization channel: $B^{\pm} \rightarrow J/\psi(\mu^+\mu^-)K^{\pm}$

Combine two muons with a track to form candidates.

Compare MC simulation with data.

Control Sample: $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

Recall master formula

$$\mathcal{B}(B_s^0 \to \mu\mu; 95\%C.L.) = \frac{N(n_{obs}, n_B)}{N(B^{\pm} \to J/\psi K^{\pm})} \frac{f_u}{f_s} \frac{\varepsilon^{B^{\pm}}}{\varepsilon^{B_s^0}} \mathcal{B}(B^{\pm} \to J/\psi(\mu^+\mu^-)K^{\pm})$$

• Measure $B_s^0 \rightarrow J/\psi \phi$ to validate exclusive B_s^0 decay.

Background estimation

- Background in signal window estimated from sidebands by linear interpolation.
- Investigate shape of background (by loosening cuts) and get uncertainty for linear interpolation.

$B \rightarrow \mu \mu$ results

Variable	$B_s^0 \rightarrow \mu \mu$ Barrel	$B_d^0 \rightarrow \mu \mu$ Barrel	$B_s^0 \rightarrow \mu \mu$ Endcap	$B_d^0 \rightarrow \mu \mu Endcap$
$N_{\rm signal}^{\rm exp}$	0.80 ± 0.16	0.065 ± 0.011	0.36 ± 0.16	0.025 ± 0.004
$N_{\rm bg}^{\rm exp}$	0.60 ± 0.35	0.40 ± 0.23	0.80 ± 0.40	0.53 ± 0.27
$N_{\rm peak}^{\rm exp}$	0.071 ± 0.020	0.245 ± 0.056	0.044 ± 0.011	0.158 ± 0.039
$N_{\rm s+b}^{\rm exp}$	1.471 ± 0.385	0.71 ± 0.24	1.204 ± 0.431	0.713 ± 0.273
Nobs	2	0	1	1

Expectations and observations

Upper limits

SM values

$$egin{aligned} \mathcal{B}(B^0_s o \mu\mu) &= (3.2 \pm 0.2) imes 10^{-9} \ \mathcal{B}(B^0_d o \mu\mu) &= (1.0 \pm 0.1) imes 10^{-10} \end{aligned}$$

 \blacktriangleright upper limits with $\rm CL_{s}$

$$\begin{array}{lll} \mathcal{B}(B^0_s \to \mu \mu) &< & 1.9 \times 10^{-8} & (95\% \, \mathrm{C.L.}) \\ \mathcal{B}(B^0_d \to \mu \mu) &< & 4.6 \times 10^{-9} & (95\% \, \mathrm{C.L.}) \end{array}$$

• Expected upper limits for our measurement of $B^0_s
ightarrow \mu\mu$

$$\begin{array}{ll} {\rm bkg \ only:} & (1.45^{+0.52}_{-0.48})\times 10^{-8} \\ {\rm SM:} & (1.88^{+0.67}_{-0.77})\times 10^{-8} \end{array}$$

p values for background only

$$B_s^0 o \mu\mu: 0.11 (= 1.20\sigma)$$
 $B_d^0 o \mu\mu: 0.40 (= 0.27\sigma)$

CMS+LHCb combination

$$\mathcal{B}(B^0_s
ightarrow \mu\mu) < 1.1 imes 10^{-8}$$

Outlook

Luminosity increases

- More advanced analysis. Switch from 'Cut & Count' to MVA.
- Improvements within analysis

Candidate

Thank you for your attention