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Motivations

Why are we interested in top quarks?

• Very large cross section at the LHC:
σt t̄ (14TeV,ptop

T > 700GeV) ≈ 700fb

• Large Yukawa coupling. Sensitivity to the mechanism of
electroweak symmetry breaking

• Background to various New Physics searches

• Preferred channel for the decay of potential new heavy
resonances



Motivations
A few facts about t t̄ production
• At the LHC an experimental error of ∼ 5% is expected for σt t̄

• Theoretically, NLO[1]+NLL[2] calculations for the LHC give an
uncertainty of ∼ 10%

• [1] Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91
• [2] Kidonakis, Sterman ’97; Bonciani et al. ’98, Cacciari et al. ’08; Moch, Uwer ’08;
Kidonakis ’08
• Most recently completed NNLL resummation: Ahrens et al. ’11

To match the theoretical and experimental accuracies, a
full NNLO calculation is needed
• 2-Loop corrections: Czakon ’08; Bonciani et al. ’08-’10
• 1×1-loop corrections: Korner et al. ’05, Anastasiou, Aybat ’08; Kniehl et al. ’08
• Real-Virtual corrections: Bierenbaum, Czakon, Mitov, ’11
• Real corrections:
• Subtraction methods at NNLO (massless): Daleo et al. ’09; Boughezal,

Gehrmann-De Ridder, Ritzmann ’10; Glover, Pires ’10
• New NNLO methods (massive): Czakon ’11; Anastasiou, Herzog, Lazopoulos ’10



Motivations

Full NNLO calculation is not completed yet
⇒ Our aim: compute real radiation corrections

Towards this goal we

• Fully extended the NLO antenna subtraction method for hadronic
collisions to incorporate massive particles in the final state [1]

• Computed NLO subtraction terms for σt t̄ and σt t̄+jet
[1]

• σNLO
tt̄+jet needed for t t̄ at NNLO (same matrix elements, same single

unresolved limits)

• Computed NNLO subtraction terms for the following processes
contributing to the double real emission corrections to t t̄
production at the LHC:

qq̄ → t t̄q′q̄′ qq̄ → t t̄qq̄ qq′ → t t̄qq′ qq → t t̄qq

[1] G.A and A. Gehrmann-De Ridder, JHEP 1104, 063 (2011)



Subtraction at NLO for hadronic processes

Symbolically, we can write

dσ̂NLO =

∫
dΦm+1

(
dσ̂R

NLO−dσ̂S
NLO

)
J(m+1)

m

+

∫
dΦm

(
dσ̂V

NLO + dσ̂MF
NLO+

∫
1
dσ̂S

NLO

)
J(m)

m ,

Subtraction term:
• Approximation to the (m + 1)-particle matrix element in its single

unresolved limits
• Soft limits: Eg → 0
• Collinear limits: for example q||g ⇒ sqg → 0

• Can be integrated over a factorized form of the (m + 1)-particle
phase space and added to the 1-loop m-particle contribution

⇒ dσ̂R
NLO − dσ̂S

NLO is numerically finite
dσ̂V

NLO + dσ̂MF
NLO +

∫
1 dσ̂S

NLO is free of divergencies



Real radiation for t t̄ + jets production at NLO

For p1 + p2 → kQ + kQ̄ + (m − 2)jets

dσ̂R
NLO(p1,p2) = N

∑
dΦm+1(kQ , kQ̄ , k1, . . . , km−1; p1,p2)

× 1
Sm+1

|Mm+1(kQ , kQ̄ , k1, . . . , km−1; p1,p2)|2

×J(m+1)
m (kQ , kQ̄ , k1, . . . , km−1).

Knowing the factorization properties ofM in its infrared limits, we
can construct dσ̂S

NLO that reproduces all the configurations in which a
parton j becomes unresolved between the hard radiators i and k .

Unresolved limits ofM:
• Soft gluon limits→ ε poles in dσ̂
• Collinear limits (massless partons)→ ε poles in dσ̂
• Quasi-collinear limits (with at least one massive final state

fermion)→ ln(Q2/M2
Q) in dσ̂



NLO Antenna subtraction
Subtraction terms for m-jet production (massless case):

• Product of reduced matrix elements with m particles and
antenna functions

• Antenna functions X 0
3 (i , j , k): normalized three-particle matrix

element
• Two hard particles (hard radiators)

• One particle soft, or collinear to either of the radiators

1 1

i

j

k

I

i

j

k

I

m+1 m+1

K

K

|Mm+1(..., pi , pj , pk , ...)|2 → X 0
3 (i , j , k) · |Mm(..., pI , pK , ...)|2



For t t̄ and t t̄ + jet at NLO...
We need
• Three types of subtraction terms

• Final-final: both hard radiators in the final state
• Initial-final: one hard radiator in the initial state and one in the final

state
• Initial-initial: both hard radiators in the initial state

• Massive final-final and initial-final antennae as well as massless
initial-final and initial-initial three parton antennae

Example: To account for the unresolved limits of a gluon between a
massless qq̄ pair we need

A0
3(q,g, q̄), which is generated from (γ∗ → qgq̄)/(γ∗ → qq̄)

If we have a massive QQ̄ pair instead, we need

A0
3(Q,g, Q̄), which is generated from (γ∗ → QgQ̄)/(γ∗ → QQ̄)

Initial-final and initial- initial antennae (massless or massive) are
obtained by appropriate crossings of their final-final counterparts.



t t̄ production at NLO

For t t̄ production at NLO

dσR =

∫
dξ1

ξ1

dξ2

ξ2

{∑
q

[
fq(ξ1)fq̄(ξ2)dσ̂qq̄→QQ̄g + fq(ξ1)fg(ξ2)dσ̂qg→QQ̄q

+fq̄(ξ1)fg(ξ2)dσ̂q̄g→QQ̄q̄

]
+ fg(ξ1)fg(ξ2)dσ̂gḡ→QQ̄g

}
For the color decomposition of the amplitudes needed for the partonic
cross-sections we consider the fictitious processes
• 0→ QQ̄qq̄g
• 0→ QQ̄ggg



Antenna subtraction for t t̄ production at NLO
• Colour decomposed amplitude squared:

|M0
5 (3q̄4q → 1Q , 2Q̄ , 5g)|2 =

g6(N2
c − 1)

8

×
»

Nc

“
|M0

5(1Q , 5g , 4̂q ; ; 3̂q̄ , 2Q̄)|2 + |M0
5(1Q , 4̂q ; ; 3̂q̄ , 5g , 2Q̄)|2

”
+

1
Nc

“
|M0

5(1Q , 5g , 2Q̄ ; ; 3̂q̄ , 4̂q)|2 + |M0
5(1Q , 2Q̄ ; ; 3̂q̄ , 5g , 4̂q)|2

−2|M0
5(1Q , 2Q̄ , 3̂q̄ , 4̂q , 5γ)|2

”–
.

• Subtraction term:

dσ̂S
qq̄→QQ̄g =

g6(N2
c − 1)

8
dφ3(k1Q , k2Q̄ , k5g ; p4q , p3q̄)

×


Nc

»
A0

3(4q ; 1Q , 5g)|M0
4((f15)Q , 2Q̄ , 3̂q̄ ,

ˆ̄4q̄)|2J(2)
2 (K e15, k2)

+A0
3(3q̄ ; 2Q̄ , 5g)|M0

4(1Q , (f25)Q̄ ,
ˆ̄3q̄ , 4̂q)|2J(2)

2 (k1,K e25)

–
− 1

Nc

»
A0

3(1Q , 5g , 2Q̄)|M0
4((f15)Q , (f25)Q̄ , 3̂q̄ , 4̂q)|2J(2)

2 (k e15, k e25)

+A0
3(4q , 3q̄ ; 5g)|M0

4(1̃Q , 2̃Q̄ ,
ˆ̄3q̄ ,

ˆ̄4q)|2J(2)
2 (k̃1, k̃2)

–ff
.



t t̄ + jet production at NLO

For t t̄ + jet production the unphysical processes are:
• 0→ QQ̄qq̄q′q̄′

• 0→ QQ̄qq̄gg
• 0→ QQ̄gggg

Calculations are more involved because
• More partial amplitudes
• More unresolved limits to subtract
• Identical flavour contributions
• Colour interferences

This calculation is our first step towards t t̄ at NNLO [1]

• Same |M|2 and same colour decomposition
• Same single unresolved limits as the real corrections to t t̄ at

NNLO
[1]G.A and A. Gehrmann-De Ridder, JHEP 1104, 063 (2011)



t t̄ production at NNLO

At NNLO we can symbolically write

dσ̂NNLO =

Z
dΦm+2

“
dσ̂R

NNLO − dσ̂S
NNLO

”
+

Z
dΦm+1

“
dσ̂V ,1

NNLO + dσ̂MF ,1
NNLO − dσ̂VS,1

NNLO

”
+

Z
dΦm

“
dσ̂V ,2

NNLO + dσ̂MF ,2
NNLO

”
+

Z
dΦm+2

dσ̂S
NNLO +

Z
dΦm+1

dσ̂VS,1
NNLO

• With the subtraction term each line is free of singularities and
can be integrated numerically

• We focus on double the real radiation piece: dσ̂R
NNLO − dσ̂S

NNLO



Double real radiation for t t̄ production at NNLO

For p1 + p2 → kQ + kQ̄

dσ̂R
NNLO(p1,p2) = N

∑
dΦ4(kQ , kQ̄ , k1, k2; p1,p2)

× 1
S4
|M6(kQ , kQ̄ , k1, k2; p1,p2)|2

×J(4)
2 (kQ , kQ̄ , k1, k2).

Construct dσ̂S
NNLO that reproduces the behaviour of |M6|2 in all

• Single unresolved limits

• Double unresolved limits



Double unresolved limits in t t̄ production at NNLO

• Limits that involve the top quark mass (explicit mt dependance in
soft factors):
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Figure 15: (a) Example configuration of a soft and collinear event with sijk ≈ s12 = s and sij → 0.
(b) Distribution of R for 10000 soft and collinear phase space points.
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Figure 16: (a) Example configuration of a soft and collinear event with sijk ≈ s12 ≡ s and s1i → 0.
(b) Distribution of R for 10000 soft and collinear phase space points.

For the initial state singularity we define x = (s− sijk)/s and y = s1i/s and fig. 16(b)
shows three choices of x and y, x = |y| = 10−5 (red), green x = |y| = 10−6 (green) and
x = |y| = 10−7 (blue), where we obtained an average of R = 0.99999998 with a standard
deviation of σ = 1.6× 10−7.

Figs. 15 (b) and 16 (b) show that the subtraction term successfully reproduces the real
radiation matrix element in the soft-collinear regions.

6.4 Double collinear limit

There are three different topologies where two pairs of particles can become collinear sepa-
rately by demanding that two invariants vanish simultaneously. The double invariants pair
may involve two final state pairs momenta (illustrated in fig. 17(a)), or one final state pair
and one initial state pair (fig. 18(a)) or two initial state pairs shown in fig. 19(a).

In each case we generate 10000 phase space points and plot the R distribution. In
the final-final case we set x = sij/s, y = skl/s and show results for x = y = 10−4 (red),

– 60 –

(b) Soft-collinear limits



Double unresolved limits in t t̄ production at NNLO

• Limits that do not involve the top quark mass (massless limits):
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Figure 13: (a) Example configuration of a triple collinear event with sijk → 0. (b) Distribution
of R for 10000 triple collinear phase space points.
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Figure 14: (a) Example configuration of a triple collinear event with s1jk → 0. (b) Distribution
of R for 10000 triple collinear phase space points.

x = −10−10 we obtained an average of R = 0.99954 with a standard deviation of σ = 0.04.
Fig. 14(b) shows that this singular region is also well described by the subtraction term.

6.3 Soft and collinear limit

To probe the soft and collinear regions of the phase space, we generate an event config-
uration with a soft final state gluon l by making a triple invariant sijk close to the full
center of mass energy s12. When the two collinear gluons are in the final state, we allow
the ijk cluster to decay into three particles with the constraint that sij is small (shown in
fig. 15(a)), while for an initial state collinear singularity, we rotate the i, j and k momenta
such that s1i is small (shown in fig. 16(a)).

In the first case we use two variables to approach this unresolved limit, x = (s−sijk)/s
and y = sij/s. Fig. 15(b) shows three choices of x and y, x = y = 10−4 (red), x = y =
10−5 (green) and x = y = 10−6 (blue). For x = y = 10−6 we obtained an average of
R = 0.99999993 with a standard deviation of σ = 0.0001.
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(c) Triple collinear limits
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Figure 17: (a) Example configuration of a double collinear event with sij → 0 and skl → 0
simultaneously. (b) Distribution of R for 10000 double collinear phase space points.
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Figure 18: (a) Example configuration of a double collinear event with sjk → 0 and s1i → 0. (b)
Distribution of R for 10000 double collinear phase space points.
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Figure 19: (a) Example configuration of a double collinear event with s1i → 0 and s2j → 0
simultaneously. (b) Distribution of R for 10000 double collinear phase space points.
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(d) Double collinear limits

NOTE: Collinearities involving a massive (anti) quark are regulated by
mt , i.e we do not subtract quasi-collinear limits at NNLO



Antenna subtraction for double real radiation in t t̄
production at NNLO

Four parton antenna functions X 0
4 (i , j , k , l)

• Two hard particles (massless or massive)
• Two unresolved particles (massless)

Subtraction terms for m-jet production

• Product of reduced matrix elements with m particles and
antenna functions:
• 1 particle unresolved⇒ 3 parton antennae (as NLO)
• 2 particles unresolved⇒ 4 parton antennae (genuine NNLO)

(colour connected)



Antenna subtraction for double real radiation in t t̄
production at NNLO

For example, the partial amplitude squared

|M0
6(1Q , 6q̄′ ; ; 5q′2Q̄ ; ; 3̂q̄ , 4̂q)|2

(contributing to qq̄ → t t̄q′q̄′) contains the 5q′ ,6q̄′ double soft limit.

To subtract this limit we use the following combination of antenna
functions

(B0
4(1Q , 5q′ , 6q̄′ , 2Q̄)−E0

3 (1Q , 5q′ , 6q̄′ )A0
3((f15)Q , (f56)g , 2Q̄))|M0

4((g156)Q , (g256)Q̄ , 3̂q̄ , 4̂q)|2

• B0
4(1Q , 5q′ , 6q̄′ , 2Q̄)

• Subtracts the 5q′ , 6q̄′ double soft limit
• Introduces a spurious collinear singularity 5q′ ||6q̄′

• E0
3 (1Q , 5q′ , 6q̄′ )A0

3(f15Q ,f56g , 2Q̄)

• Subtracts the spurious 5q′ ||6q̄′ limit introduced by B0
4(1Q , 5q′ , 6q̄′ , 2Q̄)



Antenna subtraction for double real radiation in t t̄
production at NNLO

So far we have
• Computed massive four-parton final-final and inital-final antenna

functions required for partonic processes involving quarks

• Used
• Massless four-parton antennae (final-final, initial-final, initial-initial)
• Massive and massless three parton antenna functions

• Constructed subtraction terms for all partonic processes
involving quarks :

qq̄ → t t̄q′q̄′ qq̄ → t t̄qq̄ qq′ → t t̄qq′ qq → t t̄qq

• Performed non trivial numerical tests on these subtraction terms
in all single and double unresolved limits (more on this in the next
transparencies)



Check of the subtraction terms for t t̄ at NNLO
for partonic processes involving quarks

To check our subtraction terms
• Choose scaling parameter x for each limit
• Generate phase space trajectories approaching each limit
• Require the t t̄ pair to be in separate hard jets
• Compute the ratio R =(amplitude squared)/(subtraction term)

Example: qq̄ → t t̄q′q̄′

• Double soft limit: x = (s − st t̄ )/s
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Check of the subtraction terms for t t̄ at NNLO
for partonic processes involving quarks

Example: qq̄ → t t̄q′q̄′

• Triple collinear limit: x = −sqq′q̄′/s
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Summary and conclusions

• We fully extended the antenna subtraction method at NLO for
hadronic processes with massive final state fermions:

• Computed and integrated massive initial-final antenna functions
relevant for t t̄ and t t̄ + jet

• Generalized phase space mapping and factorization formulae for
the massive case

• We constructed NLO subtraction terms for all partonic processes
involved in t t̄ and t t̄ + jet production

These results are our first step towards an NNLO calculation for t t̄
production at the LHC and have been published in G.A and A.
Gehrmann-De Ridder, JHEP 1104, 063 (2011)



Summary and conclusions

Towards t t̄ at NNLO (double real radiation)

• We constructed NNLO subtraction terms for all partonic
processes involving quarks : qq̄ → t t̄q′q̄′ qq̄ → t t̄qq̄
qq′ → t t̄qq′ qq → t t̄qq

• Performed non trivial numerical tests on these subtraction terms
in all single and double unresolved limits

• NEXT: We shall compute subtraction terms for the remaining
processes involving gluons in initial and final state

THANK YOU!
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